Skip to main content

Advertisement

Log in

Impaired capillary tube formation induced by elevated secretion of IL8 involves altered signaling via the CXCR1/PI3K/MMP2 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Angiogenesis is a multistep process requiring endothelial cell activation, migration, proliferation and tube formation. We recently reported that elevated secretion of interlukin 8 (IL8) by myotubes (MT) from subjects with Type-2 Diabetes (T2D) reduced angiogenesis by human umbilical vein endothelial cells (HUVEC) and human skeletal muscle explants. This lower vascularization was mediated through impaired activation of the phosphatidylinositol 3-kinase (PI3K)-pathway. We sought to investigate additional signaling elements that might mediate reduced angiogenesis. HUVEC were exposed to levels of IL8 equal to those secreted by MT from non-diabetic (ND) and T2D subjects and the involvement of components in the angiogenic response pathway examined. Cellular content of reactive oxygen species and Nitrate secretion were similar after treatment with [ND-IL8] and [T2D-IL8]. CXCR1 protein was down-regulated after treatment with [T2D-IL8] (p < 0.01 vs [ND-IL8] treatment); CXCR2 expression was unaltered. Addition of neutralizing antibodies against CXCR1 and CXCR2 to HUVEC treated with IL8 confirmed that CXCR1 alone mediated the angiogenic response to IL8. A key modulator of angiogenesis is matrix metalloproteinase-2 (MMP2). MMP2 secretion was higher after treatment with [ND-IL8] vs [T2D-IL8] (p < 0.01). MMP2 inhibition reduced tube formation to greater extent with [ND-IL8] than with [T2D-IL8] (p < 0.005). The PI3K-pathway inhibitor LY294002 reduced IL8-induced MMP2 release. IL8 regulation of MMP2 release was CXCR1 dependent, as anti-CXCR1 significantly reduced MMP2 release (p < 0.05). These results suggest that high levels of IL8 secreted by T2D MT trigger reduced capillarization via lower activation of a CXCR1-PI3K pathway, followed by impaired release and activity of MMP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data produced during this study are available from the corresponding author upon reasonable request. No specific materials were produced during this study.

References

  1. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–SS63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lillioja S, Young AA, Cutler CL, Ivy JL, Abbott WG, Zawadzki JK et al (1987) Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 80:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murakami S, Fujita N, Kondo H, Takeda I, Momota R, Ohtsuka A et al (2012) Abnormalities in the fiber composition and capilary archetechture in the soleus muscle of type 2 diabetic Goto-Kakizaki rats. Sci World J 2012:680189

    Article  Google Scholar 

  4. Marin P, Andersson B, Krotkiewski M, Bjorntorp P (1994) Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 17:382–386

    Article  CAS  PubMed  Google Scholar 

  5. Mathieu-Costello O, Kong A, Ciaraldi TP, Cui L, Ju Y, Chu N et al (2003) Regulation of skeletal muscle morphology in type 2 diabetic subjects by troglitazone and metformin: relationship to glucose disposal. Metabolism 52:540–546

    Article  CAS  PubMed  Google Scholar 

  6. Munoz-Chapuli R, Quesada AR, Medina MA (2004) Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61:2224–2243

    Article  CAS  PubMed  Google Scholar 

  7. Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and would healing. Int J Vasc Med 2012:1–30

    Article  Google Scholar 

  8. Amir Levy Y, Ciaraldi TP, Mudaliar SR, Phillips SA, Henry RR (2015) Excessive secretion of IL-8 by skeletal muscle in type 2 diabetes impairs tube growth: potential role of PI3K and the Tie2 receptor. Am J Physiol Endocrinol Metab 309:E22–E34

    Article  PubMed  Google Scholar 

  9. Ciaraldi TP, Ryan AJ, Mudaliar SR, Henry RR (2016) Altered myokine secretion is an intrinsic property of skeletal muscle in type 2 diabetes. PLoS One 11:e0158209

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic ß-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    Article  CAS  PubMed  Google Scholar 

  12. Lee LF, Hellendall RP, Haskill YWJS, Mukaida N, Matsushima K, Ting JPY (2000) IL8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J Immunol 164:2769–2775

    Article  CAS  PubMed  Google Scholar 

  13. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interlukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 7:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimura T, Kohno H, Matsuoka Y, Murakami M, Nakatsuka R, Hase M et al (2011) CXCL8 enhances the angiogenic activity of umbilical cord blood-derived outgrowth endothelial cells in vitro. Cell Biol Int 35:201–208

    Article  CAS  PubMed  Google Scholar 

  15. Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 42:2874–2886

    Article  CAS  PubMed  Google Scholar 

  16. Heideman J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR et al (2003) Angiogeneic effects of interlukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278:8508–8515

    Article  Google Scholar 

  17. Lai Y, Shen Y, Liu XH, Zhang Y, Liu YF (2011) Interlukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac-RhoA pathway. Int J Biol Sci 7:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H, Ben-Baruch A (2006) CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine 33:1–16

    Article  CAS  PubMed  Google Scholar 

  19. Schraufstatter A, Chung J, Burger M (2001) IL8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signalling pathways. Am J Phys Lung Cell Mol Phys 280:L1094–LL103

    CAS  Google Scholar 

  20. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving traget for therapeutic intervention. J Clin Invest 103:1237–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogowicz A, Zozulinska D, Wierusz-Wysocka B (2007) Role of martix metalloproteinases in the development of vascular complications of diabetes mellitus—clinical implications. Pol Arch Med Wewn 117:103–108

    Google Scholar 

  22. Miyoshi T, Yamashita K, Arai T, Yamamoto K, Mizugishi K, Uchiyama T (2010) The role of endothelial IL8/NADPH oxidase 1 axis in sepsis. Immunology 131:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human angiogenesis assays with capillaries formed in vivo. Angiogenesis 4:113–121

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Wei J, Chang M, Liu Z, Li D, Hu S et al (2013) Proteomic analysis of endothelial progenitor cells exposed to oxidative stress. Int J Mol Med 32:607–614

    Article  CAS  PubMed  Google Scholar 

  25. Jo YK, Park SJ, Shin JH, Kim YJ, Hwang JJ, Cho DH et al (2011) ARP101, a selective MMP-2 inhibitor, induces autophagy-associated cell death in cancer cells. Biochem Biophys Res Commun 404:1039–1043

    Article  CAS  PubMed  Google Scholar 

  26. Crawford TN, Alfaro DV, Kerrison JB, Jabalon EP (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5:8–13

    Article  CAS  PubMed  Google Scholar 

  27. Corvera S, Gealekman O (2013) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842:463–472

    Article  PubMed  PubMed Central  Google Scholar 

  28. Costa PZ, Soes R (2013) Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci 92:1037–1045

    Article  CAS  PubMed  Google Scholar 

  29. Pedersen BK (2013) Muscle as a secretory organ. Comp Physiol 3:1337–1362

    Article  Google Scholar 

  30. Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA (1996) The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest 97:1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiGregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM et al (2005) Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose tissue and muscle tissues. Association with cytokine expression, insulin resistance, and reduction by pioglitqazone. Diabetes 54:2305–2313

    Article  CAS  Google Scholar 

  32. Garneau L, Aguer C (2019) Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab 45:505–516

    Article  CAS  PubMed  Google Scholar 

  33. Massart J, Katayama M, Krook A (2016) microManaging glucose and lipid metabolism in skeletal muscle: role of microRNAs. Biochim Biophys Acta 1861:2130–2138

    Article  CAS  PubMed  Google Scholar 

  34. Rai M, Demontis F (2016) Systemic nutrient and stress signaling via myokines and myometabolites. Annu Rev Physiol 78:85–107

    Article  CAS  PubMed  Google Scholar 

  35. Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J (2013) Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem 119:75–80

    Article  PubMed  Google Scholar 

  36. Scheler M, Irmler M, Lehr S, Hartwig S, Staiger H, Al-Hasani H et al (2013) Cytokine response of primary human myotubes in an in vitro exercise model. Am J Phys Cell Physiol 305:C877–CC86

    Article  CAS  Google Scholar 

  37. Pedersen L, Olsen CH, Pedersen BK, Hojman P (2012) Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in muscle. Am J Physiol Endocrinol Metab 302:E831–EE40

    Article  CAS  PubMed  Google Scholar 

  38. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK (2005) Autoctine role of interlukin-8 in induction of endothelial cell proloferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8:63–71

    Article  CAS  PubMed  Google Scholar 

  39. Kim J-W, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation 113:1888–1904

    Article  PubMed  Google Scholar 

  40. Gong Y, Chippada-Venkata UD, Oh WK (2014) Role of MMPs and their natural inhibitors in prostrate cancer progression. Cancers (Basal) 6:1298–1327

    Article  Google Scholar 

  41. Schanaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, Dorazi G, Murphy AN et al (1993) Type IV collagenases and TIMPS modulate endothelial cell morphogenesis in vitro. J Cell Physiol 156:235–246

    Article  Google Scholar 

  42. Rojiani MV, Alidina J, Espositi N, Rojiani AM (2010) Expression of MMP2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol 3:775–781

    PubMed  PubMed Central  Google Scholar 

  43. Luca M, Huang SF, Gershenwald JE, Singh RK, Reich R, Bar-Eli M (1997) Expression of IL8 by human melanoma cells up-regulates MMP2 activity and increases tumor growth and metastasis. Am J Pathol 151:1105–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jovanovic M, Stefanoska I, Radojcic L, Vicovac L (2010) IL8 stimulates trophoblast cells migration and invasion by increasing levels of MMP2 and MMP9 and integrins alpha 5 and beta 1. Reproduction 139:789–798

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y et al (2006) MMP2 and MMP9 secreted by EPO-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26:5996–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD et al (2000) Interlukin 8 expression regulates tumorgenicity and metastatasis in androgen-independent prostate cancer. Clin Cancer Res 6:2104–2119

    CAS  PubMed  Google Scholar 

  47. Choi HJ, Jeon SY, Hong WK, Jung SE, Kang HJ, Kim J-W et al (2013) Effect of glucose ingestion in plasma markers of inflammation and oxidative stress: analysis of 16 plasma markers from oral glucose tolerance test samples of normal and diabetic patients. Diabetes Res Clin Pract 99:e27–e31

    Article  CAS  PubMed  Google Scholar 

  48. Akerstrom T, Steensberg A, Keller P, Keller C, Penkowa M, Petersen BK (2005) Exercise induces interlukin-8 expression in human skeletal muscle. J Physiol 563:507–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Leslie Carter for technical assistance.

Funding

This work was supported by Merit Review Award No. I01CX00635 from the United States (U.S.) Department of Veterans Affairs Clinical Sciences Research and Development Service. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Author notes

  1. Robert R. Henry is deceased. This paper is dedicated to his memory.

    • Robert R. Henry
Authors

Contributions

YAL researched data and wrote the manuscript. TPC researched data, contributed to discussion and reviewed/edited the manuscript. RRH contributed to discussion and reviewed/edited the manuscript. TPC is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Theodore P. Ciaraldi.

Ethics declarations

Conflict of interest/Competing interests

The authors have nothing to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 8962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, Y.A., Ciaraldi, T.P. & Henry, R.R. Impaired capillary tube formation induced by elevated secretion of IL8 involves altered signaling via the CXCR1/PI3K/MMP2 pathway. Mol Biol Rep 48, 601–610 (2021). https://doi.org/10.1007/s11033-020-06104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06104-z

Keywords

Navigation