Skip to main content
Log in

Genetic structure and diversity analysis of tall fescue populations by EST-SSR and ISSR markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tall fescue is a perennial cool-season grass with economic importance especially in temperate regions of the northern hemisphere. This study was done to assess the genetic diversity and population structure of 90 tall fescue populations and cultivars using ISSR and EST-SSR markers in order to categorize valuable populations for breeding programs and to construct the core collection of tall fescue collection in Iran. The 10 EST-SSR primer pairs amplified 92 alleles. The allele numbers varied from 4 to 13 alleles per locus with an average of 9.2 alleles, of which 84 (90.6%) were polymorphic with an average of 8.4 polymorphic bands per primer. The 39 ISSR primers totally produced 387 scorable bands, of which 335 (86.6%) were polymorphic with an average of 8.6 polymorphic bands per primer. The amplified markers by ISSR primers varied from 6 to 14 markers per primer with an average of 9.92 markers per primer. The 90 tall fescue populations using both EST-SSR and ISSR data were classified into two clusters by UPGMA method that was coincide with PCA and structure analysis results. The turf-type and forage-type populations were clearly separated. Based on the results, the Iranian populations provide a valuable and novel germplasm to employ in tall fescue varietal improvement programs for both forage and turf-type applications. This progression is an important step to introduce this collection for development of a core collection of tall fescue germplasm in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ISSR:

Inter-simple sequence repeat

PCR:

Polymerase chain reaction

EST-SSR:

Expressed sequence tag-simple sequence repeat

UPGMA:

Unweighted pair group method with arithmetic mean

PCA:

Principal component analysis

PIC:

Polymorphic information content

He:

Expected heterozygosity

Ne:

Number of effective alleles

I:

Shannon’s information index

PPL:

Percentage of polymorphic loci

References

  1. Jenkins TJ (1954) Interspecific and intergeneric hybrids in herbage grasses. J Genet 28:252–281. https://doi.org/10.1007/BF02981525

    Article  Google Scholar 

  2. Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future combining the attributes of Lolium and Festuca. Euphytica 133:19–26. https://doi.org/10.1023/A:1025694819031

    Article  Google Scholar 

  3. Spangenberg PG, Wang ZY, Wu X, Nage VA, Iglesias L, Potrykus I (1995) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701. https://doi.org/10.1016/S0176-1617(11)81283-6

    Article  CAS  Google Scholar 

  4. Saikkonen K, Phillips TD, Faeth SH, McCulley RL, Saloniemi I, Helander M (2016) Performance of endophyte infected tall fescue in Europe and North America. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0157382

    Article  CAS  Google Scholar 

  5. Fu K, Zhihui G, Xinquan Z, Yan F, Wendan W, Daxu L, Yan P, Linkai H, Ming S, Shiqie B, Xiao M (2016) Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas 153:9–20. https://doi.org/10.1186/s41065-016-0013-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Talukder SK, Saha MC (2017) Toward genomics-based breeding in C3 cool-season perennial grasses. Front Plant Sci 8:1317. https://doi.org/10.3389/fpls.2017.01317

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  8. Spooner DM, Gavrilenko T, Jansky SH, Ovchinnikova A, Krylova E, Knapp S, Simon R (2010) Ecogeography of ploidy variation in cultivated potato (Solanum Sect. Petota). Am J Bot 97:2049–2060. https://doi.org/10.3732/ajb.1000277

    Article  PubMed  Google Scholar 

  9. Godwin ID, Aitken EA, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528. https://doi.org/10.1002/elps.1150180906

    Article  CAS  PubMed  Google Scholar 

  10. Ghorbanzadeh Naghab M, Panahi B (2017) Molecular characterization of Iranian black cumin (Nigella sativa L.) accessions using RAPD marker. Biotechnologia 98:97–102. https://doi.org/10.5114/bta.2017.68308

    Article  CAS  Google Scholar 

  11. Mahmoudi B, Panahi B, Mohammadi SA, Daliri M, Babayev MS (2014) Microsatellite based phylogeny and bottleneck studies of Iranian indigenous goat populations. Anim Biotechnol 25:210–222. https://doi.org/10.1080/10495398.2013.850431

    Article  PubMed  Google Scholar 

  12. Lauvergeat V, Barre P, Bonnet M, Ghesquiere M (2005) Sixty simple sequence repeat markers for use in the Festuca-Lolium complex of grasses. Mol Ecol Notes 5:401–405. https://doi.org/10.1111/j.1471-8286.2005.00941.x

    Article  CAS  Google Scholar 

  13. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Haixia L, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:1–13. https://doi.org/10.1186/1471-2164-12-451

    Article  CAS  Google Scholar 

  14. Fu YB, Peterson GW, Yu JK, Gao L, Jia J, Richards KW (2006) Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor Appl Genet 112:1239–1247. https://doi.org/10.1007/s00122-006-0225-2

    Article  CAS  PubMed  Google Scholar 

  15. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805. https://doi.org/10.1007/s00122-004-1685-x

    Article  CAS  PubMed  Google Scholar 

  16. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71. https://doi.org/10.1023/A:1026785207878

    Article  CAS  Google Scholar 

  17. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhoeur S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  Google Scholar 

  18. Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717. https://doi.org/10.1007/s00122-008-0931-z

    Article  CAS  PubMed  Google Scholar 

  19. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Houdeum vulgare L.) Hereditas 135:145–151. https://doi.org/10.1007/s11032-008-9216-0

    Article  CAS  PubMed  Google Scholar 

  20. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor Appl Genet 106:411–422. https://doi.org/10.1007/s00122-002-1031-0

    Article  CAS  PubMed  Google Scholar 

  21. Malay C, Saha MC, John D, Cooper MA (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458. https://doi.org/10.1007/s00122-006-0391-2

    Article  CAS  Google Scholar 

  22. Amini F, Mirlohi AF, Majidi MM, Shojaiefar S, Kolliker R (2011) Improved polycross breeding of tall fescue through marker-based parental selection. Plant Breed 130:701–707. https://doi.org/10.1111/j.1439-0523.2011.01884.x

    Article  Google Scholar 

  23. Sharifi-Tehrani M, Mardi M, Sahebi P, Catalán P, Díaz-Pérez A (2009) Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Syst Evol 282:57–70. https://doi.org/10.1007/s00606-009-0207-3

    Article  CAS  Google Scholar 

  24. Salehi M, Salehi H, Niazi A, Ghobadi C (2014) Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb). Mol Biotechnol 56:248–257. https://doi.org/10.1007/s12033-013-9703-3

    Article  CAS  PubMed  Google Scholar 

  25. Panahi B, Afza R, Ghorbanzadeh Neghab M, Mahmoodnia M, Paymard B (2013) Relationship among AFLP, RAPD marker diversity and Agromorphological traits in safflower (Carthamus tinctorius L.) Prog Mol Biol Transl Sci 3:90–99. https://doi.org/10.22059/PBS.2013.32098

    Article  Google Scholar 

  26. Panahi B, Ghorbanzadeh Naghab M (2013) Genetic characterization of Iranian safflower (Carthamus tinctorius) using inter simple sequence repeats (ISSR) markers. Physiol Mol Biol Plants 19:239–243. https://doi.org/10.1007/s12298-012-0155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nie ZN, Chapman DF, Tharmaraj J, Clements R (2004) Effects of pasture species mixture, management, and environment on the productivity and persistence of dairy pastures in south-west Victoria. 2. Plant population density and persistence. Aust J Agric Res 55:637–643. https://doi.org/10.1071/AR03175

    Article  Google Scholar 

  28. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  29. Malay MC, Mian MAR, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336. https://doi.org/10.1007/s00122-004-1843-1

    Article  CAS  Google Scholar 

  30. Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of genetic linkage map. Theor Appl Genet 102:206–214. https://doi.org/10.1007/s001220051637

    Article  CAS  Google Scholar 

  31. Rohlf J (2012) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.2, vol 22. Exeter Software, Setauket, New York, pp 14–26. https://doi.org/10.2307/2684761

    Article  Google Scholar 

  32. Roldan-Ruiz I, Dendauw J, Vanbockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp). Mol Breed 6:125–134. https://doi.org/10.1023/A:1009680614564

    Article  CAS  Google Scholar 

  33. Pritchard-Novembre J (2016) Pritchard, Stephens, and Donnelly on population structure. Genetics 204:391–393. https://doi.org/10.1534/genetics.116.195164

    Article  Google Scholar 

  34. Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5:1–9. https://doi.org/10.1186/1471-2156-5-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:1–11. https://doi.org/10.1186/1471-2229-4-13

    Article  CAS  Google Scholar 

  36. Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470. https://doi.org/10.1007/s10709-008-9292-4

    Article  CAS  PubMed  Google Scholar 

  37. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372. https://doi.org/10.1007/s00122-006-0440-x

    Article  CAS  PubMed  Google Scholar 

  38. Borna F, Luo S, Ahmad NM, Nazeri V, Shokrpour M, Trethowan R (2017) Genetic diversity in populations of the medicinal plant Leonurus cardiaca L. revealed by inter-primer binding site (iPBS) markers. Genet Resour Crop Evol 3:479–492. https://doi.org/10.1007/s10722-016-0373-4

    Article  Google Scholar 

  39. Pivoriene O, Pasakinskiene I, Brazauskas G, Lideikyte L, Jenen LB, Lubberstedt T (2008) Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass. Agronomy 54:17–21. https://doi.org/10.2478/v10054-008-0004-x

    Article  CAS  Google Scholar 

  40. Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215. https://doi.org/10.1007/BF02772892

    Article  CAS  Google Scholar 

  41. Wang ML, Barkley NA, Jenkins TM (2009) Microsatellite markers in plants and insects. Part I. Applications of biotechnology. Genes Genomes Genom 3:54–67

    Google Scholar 

  42. Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693. https://doi.org/10.1007/s00122-004-1797-3

    Article  CAS  PubMed  Google Scholar 

  43. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744. https://doi.org/10.1007/s00122-003-1301-5

    Article  CAS  PubMed  Google Scholar 

  44. Dreisigacker S, Zhang P, Warburton ML, Skovmand D, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661. https://doi.org/10.2135/cropsci2005.0653

    Article  CAS  Google Scholar 

  45. Kolliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.) Theor Appl Genet 107:306–315. https://doi.org/10.1007/s00122-003-1248-6

    Article  CAS  PubMed  Google Scholar 

  46. Semagn K, Bjørnstad A, Ndjiondjop MN (2006) Review an overview of molecular marker methods for plants. Afr J Plant Sci Biotechnol 25:2540–2568

    Google Scholar 

  47. Ekenel HK, Sankur B (2004) Feature selection in the independent component subspace for face recognition. Pattern Recognit Lett 25:1377–1388. https://doi.org/10.1016/j.patrec.2004.05.013

    Article  Google Scholar 

  48. Zhang J, Wu D, Wang C, Qu H, Zou X, Yang C (2007) Genetic diversity analysis of Quercus mongolica populations with inter-simple sequence repeats (ISSR). JBES Sci 15:292–299

    CAS  Google Scholar 

  49. Lal RK, Gupta P, Sarkar S (2018) Phylogenetic relationships, path and principal component analysis for genetic variability and high oil yielding clone selection in Vetiver (Vetiveria zizanioides L.) Nash. J Plant Genet Breed 2:1–8

    Google Scholar 

  50. Nagaoka T, Ogihara Y (1997) Applicability of intersimple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602. https://doi.org/10.1007/s001220050456

    Article  CAS  Google Scholar 

  51. Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572. https://doi.org/10.2135/cropsci2001.4151565x

    Article  CAS  Google Scholar 

  52. Madesi P, Abraham EM, Kalivas A, Ganopoulos Ι, Tsaftaris A (2014) Genetic diversity and structure of natural Dactylis glomerata L. populations revealed by morphological and microsatellite-based (SSR/ISSR) markers. Genet Mol Res 13:4226–4240. https://doi.org/10.4238/2014.June.9.8

    Article  CAS  Google Scholar 

  53. Hand ML, Cogan NOI, Forster JW (2012) Molecular characterization and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.) Theor Appl Genet 124:1127–1137. https://doi.org/10.1007/s00122-011-1774-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of the Agricultural Biotechnology Research Institute of Iran (ABRII) is gratefully acknowledged.

Funding

This work was supported by the Agricultural Biotechnology Research Institute of Iran (ABRII) (Grant Numbers 12-05-05-015-96024-960689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohammadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

No ethical issues were promulgated.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabzadeh, Z., Mohammadi, R., Darvishzadeh, R. et al. Genetic structure and diversity analysis of tall fescue populations by EST-SSR and ISSR markers. Mol Biol Rep 47, 655–669 (2020). https://doi.org/10.1007/s11033-019-05173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05173-z

Keywords

Navigation