Skip to main content

Advertisement

Log in

Genetic diversity and spatial population structure of a deepwater snapper, Pristipomoides filamentosus in the south-west Indian Ocean

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The crimson jobfish, Pristipomoides filamentosus Valenciennes, 1830 is an economically important demersal species largely distributed in the Indo-Pacific region. Pristipomoides filamentosus constitutes a significant portion of catch landed in demersal fisheries throughout the species’ distribution range. Despite the species’ economic importance, there is insufficient data to guide the species’ conservation management, especially within the south-western (SW) Indian Ocean region. The aims of the present study were to conduct a population genetic analysis to determine the spatial genetic structure of the species and, whether different management units could be established in the region, using an analysis of both mitochondrial DNA fragment (mtDNA), and nuclear microsatellite loci. A total of 193 fin clips were collected from Seychelles, Kenya, Tanzania, Comoros, Madagascar, Mauritius and South Africa, with each having an established fishery of the species. Both haplotype diversity (h) and expected heterozygosity (HE) for mtDNA and microsatellite loci respectively were generally high for all localities, except for Seychelles where both diversity indices were at the lowest (i.e. h = 0.429 ± 0.134; HE = 0.647 ± 0.059). Even though mtDNA failed to detect population differentiation, the hypervariable microsatellite loci consistently indicated presence of four genetic clusters irrespective of the clustering approach applied. Based on present results, we propose recognising the four clusters as distinct fisheries management units of the species in the SW Indian Ocean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muths D, Tessier E, Bourjea J (2015) Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries. Mar Ecol 36:447–461

    Article  Google Scholar 

  2. Newman SJ, Williams AJ, Wakefield CB et al (2016) Review of the life history characteristics, ecology and fisheries for deep-water tropical demersal fish in the Indo-Pacific region. Rev Fish Biol Fish 26:537–562

    Article  Google Scholar 

  3. Leis JM, Lee K (1994) Larval development in the lutjanid subfamily Etelinae (Pisces): the genera Aphareus, Aprion, Etelis and Pristipomoides. Bull Mar Sci 55:46–125

    Google Scholar 

  4. Moffitt RB, Parrish FA (1996) Habitat and life history of juvenile Hawaiian pink snapper, Pristipomoides filamentosus. Pac Sci 50:370–381

    Google Scholar 

  5. Gaither MR, Jones SA, Kelley C, Newman SJ, Sorenson L, Bowen BW (2011) High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago. PLoS ONE 6(12):e28913. https://doi.org/10.1371/journal.pone.0028913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palumbi S (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  7. Ragionieri L, Cannicci S, Schubart C, Fratini S (2010) Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: a case study from the western Indian Ocean. Estuar Coast Shelf Sci 86:179–188

    Article  CAS  Google Scholar 

  8. Silva IC, Mesquita N, Paula J (2010) Lack of population structure in the Fiddler crab Uca annulipes along an East African latitudinal gradient: genetic and morphometric evidence. Mar Biol 157:1113–1126

    Article  Google Scholar 

  9. Visram S, Yang MC, Pillay RM, Said S, Henriksson O, Grahn M et al (2010) Genetic connectivity and historical demography of the blue barred parrotfish Scarus ghobban in the western Indian Ocean. Mar Biol 157:1475–1487

    Article  Google Scholar 

  10. Mkare TK, von der Heyden S, Groeneveld JC, Matthee CA (2014) Genetic population structure and recruitment patterns of three sympatric shallow-water penaeid prawns in Ungwana Bay, Kenya, with implication for fisheries management. Mar Freshw Res 65:255–266

    Article  Google Scholar 

  11. Mkare TK, Groeneveld JC, Teske PR, Matthee CA (2017) Comparative genetic structure in two high-dispersal prawn species from the south-west Indian Ocean. Afr J Mar Sci 39:467–474

    Article  Google Scholar 

  12. Otwoma LM, Kochzius M (2016) Genetic population structure of the coral reef sea star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific. PLoS ONE 11:e0165552. https://doi.org/10.1371/journal.pone.0165552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groeneveld JC, Von der Heyden S, Matthee CA (2012) High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans. Mar Biol Res 8:764–770

    Article  Google Scholar 

  14. Sá-Pinto A, Branco MS, Alexandrino PB, Fontaine MC, Baird SJE (2012) Barriers to gene flow in the marine environment: insights from two common intertidal limpet species of the Atlantic and Mediterranean. PLoS ONE 7(12):e50330

    Article  PubMed  PubMed Central  Google Scholar 

  15. Silva CNS, Gardner JPA (2016) Identifying environmental factors associated with the genetic structure of the New Zealand scallop: linking seascape genetics and ecophysiological tolerance. ICES J Mar Sci 73:1925–1934

    Article  Google Scholar 

  16. Anderson WD, Allen GR (2001) Lutjanidae. Jobfishes. Food and Agricultural Organization, Rome

    Google Scholar 

  17. Allen GR, Talbot FH (1985) Review of the snappers of the genus Lutjanus (Pisces, Lutjanidae) from the Indo-Pacific, with description of a new species. Indo-Pacific Fishes 11:1–87

    Google Scholar 

  18. Allen GR (1985) FAO species catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO, Rome, Italy

  19. Martell SJD, Kroman J, Darcy M, Christensen LB, Zeller D (2006) Status and trends of the Hawaiian bottom fish stocks: 1948–2004. University of British Columbia Fisheries Centre, Vancouver

    Google Scholar 

  20. Van der Elst RP, Everett BI (2015) (eds). Offshore fisheries of the Southwest Indian Ocean: their status and the impact on vulnerable species. Oceanographic Research Institute, Special Publication 10

  21. Andrews AH, DeMartini EE, Brodziak J, Nicholas RS, Humphreys RL (2012) A long lived life history for a tropical, deep water snapper (Pristipomoides filamentosus): bomb radiocarbon and lead-radium dating as extensions of daily increment analysis in otoliths. J Fish Aquat Sci 69:1850–1869

    Article  Google Scholar 

  22. Grimes C (1987) Reproductive biology of Lutjanidae. In: Polovina JJ, Ralston S (eds) Review paper in Tropical snappers and groupers: biology and fisheries management. Westview Press, Boulder, pp 239–294

    Google Scholar 

  23. Brodziak J, Courtney D, Wagatsuma L, O’Malley J, Lee H, Walsh W et al (2011) Stock Assessment of the Main Hawaiian Islands Deep 7 bottom fish complex through 2010. U.S. Dept. Commerce, NOAA Technical Memorandum, NOAA-TM-NMFS-PIFSC-29

  24. Haight WR, Kobayashi DR, Kawamoto K (1993) Biology and management of deepwater snappers of the Hawaiin Archipelago. Mar Fish Res 55:20–27

    Google Scholar 

  25. Meyer A (1994) Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol Evol 9:278–280

    Article  CAS  PubMed  Google Scholar 

  26. Taberlet P, Meyer A, Bouvet J (1992) Unusual mitochondrial DNA polymorphism in two local populations of blue tit, Parus caeruleus. Mol Ecol 1:27–36

    Article  CAS  PubMed  Google Scholar 

  27. Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37:133–147

    Article  Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968

    Article  CAS  Google Scholar 

  31. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  32. Leigh JW, Bryant D (2015) pop-art: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  33. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  34. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  35. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  36. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  PubMed  Google Scholar 

  37. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  38. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, Population genetics software for Windows™. Université de Montpellier II, Montpellier

  39. Park SDE (2001) The Excel microsatellite toolkit (version 3.1). Animal Genomics Laboratory, University College, Dublin

  40. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  41. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 2:539–543

    Article  Google Scholar 

  42. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  43. Meirmans PG, Hedrick PW (2011) Assessing population structures: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  44. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  49. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 4:2611–2620

    Article  Google Scholar 

  50. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  51. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  52. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol 4:137–138

    Article  Google Scholar 

  53. Corander J, Walmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 22:4399–4428

    Google Scholar 

  55. Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L et al (2012) Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol 10(9):e1001388. https://doi.org/10.1371/journal.pbio.1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  57. You EM, Chiu TS, Liu KF, Tassanakajon A, Klinbunga S, Triwitayakorn K, Pena LD, Li Y, Yu HT (2008) Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Anim Genet 39:267–277

    Article  CAS  PubMed  Google Scholar 

  58. Otwoma LM, Reuter H, Timm J, Meyer A (2018) Genetic connectivity in a herbivorous coral reef fish (Acanthurus leucosternon Bennet, 1833) in the Eastern African region. Hydrobiologia 806:237–250

    Article  Google Scholar 

  59. Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Young EF, Belchier M, Hauser L, Horsburgh GJ, Meredith MP, Murphy EJ et al (2015) Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol Appl 8:486–505

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wright D, Bishop JM, Matthee CA, von der Heyden S (2015) Genetic isolation by distance reveals restricted dispersal across a range of life histories: implications for biodiversity conservation planning across highly variable marine environments. Divers Distrib 21:698–710

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all people involved in the collection of tissue samples of the species in the seven countries. The entire management of the concluded South West Indian Ocean Fisheries Project (SWIOFP) are appreciated for logistical support and for awarding an MSc grant to FAM. We also thank BecA-ILRI Hub for providing laboratory space. The project was fully funded by the South West Indian Ocean Fisheries Project (SWIOFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kalama Mkare.

Ethics declarations

Conflict of interest

Funding was provided to FAM through South West Indian Ocean Fisheries Project (SWIOFP) and the authors have no conflict of interest.

Ethical approval

All applicable national and institutional guidelines for the use of animal tissues were applied.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mzingirwa, F.A., Mkare, T.K., Nyingi, D.W. et al. Genetic diversity and spatial population structure of a deepwater snapper, Pristipomoides filamentosus in the south-west Indian Ocean. Mol Biol Rep 46, 5079–5088 (2019). https://doi.org/10.1007/s11033-019-04962-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04962-w

Keywords

Navigation