Skip to main content
Log in

Fabrication of chitosan-bis (4-formyl-2 methoxy phenyl carbonate) Schiff base nanoparticles and evaluation of their antioxidant and anticancer properties

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study details on the mechanism of synthesis of bis (4-formyl-2 methoxy phenyl carbonate), using two green reagents dimethyl carbonate and vanillin for application as therapeutic agent. The synthesized FMPC was identified from the 13C nuclear magnetic resonance spectra. The novel modified Schiff base nanoparticles resulted from the crosslinking of FMPC with chitosan were confirmed by cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance spectroscopy. The incorporation of the FMPC was identified from the amorphous X-ray diffraction patterns of C-FMPC-Nps. The thermal stability of the formed nanoparticles was predicted using thermogravimetric analysis. The morphology of the nanoparticles as observed from HRTEM was found to be smooth and spherical in nature. Both FMPC and C-FMPC-Nps showed significant radical scavenging potential and anticancer property. The carbonate ester backbone and the moiety present in chitosan-FMPC-nanoparticles, underwent hydrolysis at the targeted cancer causing microenvironment to release vanillin and chitosan and enhance the anticancer activity. Both FMPC and C-FMPC-Nps exhibits a dose dependent cytotoxicity towards the different cell lines and it was tested with a commercial drug for application studies.

Graphical abstract

Effective synthesis of FMPC, successful incorporation onto chitosan nanoparticles for the formation of C-FMPC-Nps. The formed Schiff base compound proves to have enhanced antioxidant and anticancer efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

FMPC:

Bis (4-formyl-2 methoxy phenyl carbonate)

DMC:

Dimethyl carbonate

13C-NMR:

13C nuclear magnetic resonance

Nps:

Nanoparticles

C:

Chitosan

CP/MAS:

13C-NMR cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

HRTEM:

High resolution transmission electron microscopy

TPP:

Sodium tripolyphosphate

ATR:

Attenuated total reflectance

D2O:

Deuterium oxide

EI-MS:

Electron ionization mass spectrometry

ZrO:

Zirconium oxide

KHZ:

Kilohertz

TMS:

Tetramethyl silane

TEA:

Triethyl amine

MTT:

[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]

DPPH:

(1,1-Diphenyl-2-picryl hydrazyl)

MEM:

Minimal essential medium

FBS:

Fetal bovine serum

References

  1. Chethan PD, Vishalakshi B, Sathish L, Ananda K, Poojary B (2013) Preparation of substituted quaternized arylfuran chitosan derivatives and their antimicrobial activity. Int J Biol Macromol 59(2013):158–164

    Article  CAS  PubMed  Google Scholar 

  2. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52

    Article  CAS  PubMed  Google Scholar 

  3. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  Google Scholar 

  4. Yamamoto H, Amaike M (1997) Biodegradation of cross-linked chitosan gels by a microorganism. Macromolecules 30(13):3936–3937

    Article  CAS  Google Scholar 

  5. Geng X, Oh-Hyeong K, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432

    Article  CAS  PubMed  Google Scholar 

  6. Pasanphan W, Buettner GR, Chirachanchai S (2010) Chitosan gallate as a novel potential polysaccharide antioxidant: an EPR study. Carbohydr Res 345(1):132–140

    Article  CAS  PubMed  Google Scholar 

  7. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226

    Article  CAS  Google Scholar 

  8. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  9. Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59(7):631–644

    Article  CAS  PubMed  Google Scholar 

  10. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50(1):147–160

    Article  CAS  PubMed  Google Scholar 

  11. Xu Y, Du Y, Huang R, Gao L (2003) Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 24(27):5015–5022

    Article  CAS  PubMed  Google Scholar 

  12. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Controll Release 111(1–2):107–116

    Article  CAS  Google Scholar 

  13. Alonso-Sande M, Cuna M, Remunan-Lopez C, Teijeiro-Osorio D, Alonso-Lebrero JL, Alonso MJ (2006) Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules 39(12):4152–4158

    Article  CAS  Google Scholar 

  14. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Env Chem Lett 16(1):101–112

    Article  CAS  Google Scholar 

  15. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with b-cyclodextrin. Food Chem 101(2):652–658. https://doi.org/10.1016/j.foodchem.2006.01.053

    Article  CAS  Google Scholar 

  16. Peng H, Xiong H, Li J, Xie M, Liu Y, Bai C, Chen L (2010) Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem 121(1):23–28

    Article  CAS  Google Scholar 

  17. Li PW, Wang G, Yang ZM, Duan W, Peng Z, Kong LX, Wang QH (2016) Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells. Drug Deliv 23(1):30–35

    Article  CAS  PubMed  Google Scholar 

  18. Kwon J, Kim J, Park S, Khang G, Kang PM, Lee D (2013) Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin. Biomacromolecules 14(5):1618–1626

    Article  CAS  PubMed  Google Scholar 

  19. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  20. Chen F, Shi Z, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104(1):30–39

    Article  CAS  PubMed  Google Scholar 

  21. Mosmann T (1983) Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  22. Sukhramani PS, Patel PM (2013) Biological screening of Avicennia marina for anticancer activity. Der Pharm Sin 4(2):125–130

    CAS  Google Scholar 

  23. Thyriyalakshmi P, Radha KV (2015) Synthesis of dimethyl carbonate (DMC) based biodegradable nitrogen mustard ionic carbonate (NMIC) nanoparticles. RSC Adv 5:10560–10566

    Article  CAS  Google Scholar 

  24. Aricò F, Chiurato M, Peltier J, Tundo P (2012) Sulfur and nitrogen mustard carbonate analogues. Eur J Org Chem 17:3223–3228

    Article  CAS  Google Scholar 

  25. Jin X, Wang J, Bai J (2009) Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydr Res 344(6):825–829

    Article  CAS  PubMed  Google Scholar 

  26. Laus R, Favere VTD (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate. Bioresour Technol 102(19):8769–8776

    Article  CAS  PubMed  Google Scholar 

  27. Kocak N, Sahin M, Kucukkolbasi S, Erdogan ZO (2012) Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor. Int J Biol Macromol 51(5):1159–1166

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Li P, Peng Z, Huang M, Kong L (2011) Formulation of vanillin cross-linked chitosan nanoparticles and its characterization. Adv Mater Res 335–336(2011):474–477

    Article  CAS  Google Scholar 

  29. Santos JED, Dockal ER, Cavalheir ETG (2005) Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydr Polym 60(3):277–282

    Article  CAS  Google Scholar 

  30. Jagadish RS, Divyashree KN, Viswanath P, Srinivas P, Raj B (2012) Preparation of N-vanillyl chitosan and 4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties. Carbohydr Polym 87(1):110–116

    Article  CAS  Google Scholar 

  31. Ghate M, Manohar D, Kulkarni V, Shobhaand R, Kattimani SY (2003) Synthesis of vanillin ethers from 4-(bromomethyl) coumarins as anti-inflammatory agents. Eur J Med Chem 38(3):297–302

    Article  CAS  PubMed  Google Scholar 

  32. Stanzione JF III, Sadler JM, La Scala JJ, Reno KH, Wool RP (2012) Vanillin-based resin for use in composite applications. Green Chem 14(8):2346–2352

    Article  CAS  Google Scholar 

  33. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16(4):1987–1998

    Article  CAS  Google Scholar 

  34. Krishnapriya KR, Kandaswamy M (2010) A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. Carbohydr Res 345(14):2013–2022

    Article  CAS  PubMed  Google Scholar 

  35. Amarasekara AS, Razzaq A (2012) Vanillin-based polymers—part II: synthesis of Schiff base polymers of divanillin and their chelation with metal ions. ISRN Polym Sci 2012:1–5

    Article  CAS  Google Scholar 

  36. Kumar S, Dutta J, Dutta PK (2009) Preparation and characterization of N-heterocyclic chitosan derivative based gels for biomedical applications. Int J Biol Macromol 45(4):330–337

    Article  CAS  PubMed  Google Scholar 

  37. Stroescu M, Stoica-Guzun A, Isopencu G, Jinga SI, Parvulescu O, Dobre T, Vasilescu M (2015) Chitosan-vanillin composites with antimicrobial properties. Food Hydrocoll 48:62–71

    Article  CAS  Google Scholar 

  38. Marin L, Stoica I, Mares M, Dinu V, Simionescu BC, Barboiu M (2013) Antifungal vanillin–imino-chitosan biodynameric films. J Mater Chem B 1(27):3353–3358

    Article  CAS  Google Scholar 

  39. Singh RK, Kukrety A, Chatterjee AK, Thakre GD, Bahuguna GM, Saran S, Adhikarin DK, Atray N (2014) Use of an acylated chitosan schiff base as an ecofriendly multifunctional biolubricant additive. Ind Eng Chem Res 53(48):18370–18379

    Article  CAS  Google Scholar 

  40. Kayaci F, Uyar T (2011) Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability. J Agric Food Chem 59(21):11772–11778

    Article  CAS  PubMed  Google Scholar 

  41. Tirkistani FAA (1998) Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab 60(1):67–70

    Article  CAS  Google Scholar 

  42. Tree-udom T, Wanichwecharungruang SP, Seemork J, Arayachukeat S (2011) Fragrant chitosan nanospheres: controlled release systems with physical and chemical barriers. Carbohydr Polym 86(4):1602–1609

    Article  CAS  Google Scholar 

  43. Patel Rajesh M, Patel Natvar J (2011) In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68

    Google Scholar 

  44. Jagtap RM, Pardeshi SK (2014) Antioxidant activity screening of a series of synthesized 2-aryl thiazolidine-4-carboxylic acids. Der Pharm Lett 6(3):137–145

    CAS  Google Scholar 

  45. Zhang Y, Feng S, Wu Q, Wang K, Yi X, Wang H, Pan Y (2011) Microwave-assisted synthesis and evaluation of naphthalimides derivatives as free radical scavengers. Med Chem Res 20(6):752–759

    Article  CAS  Google Scholar 

  46. Mohana KN, Pradeep Kumar CB (2013) Synthesis and antioxidant activity of 2-amino-5-methylthiazol derivatives containing 1,3,4-oxadiazole-2-thiol moiety. ISRN Org Chem 2013:1–8

    Article  CAS  Google Scholar 

  47. López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JDJ, Ocaño-Higuera VM, Rodríguez-Félix F, Cira-Chávez LA, Del-Toro-Sánchez CL, Shirai K (2015) Physicochemical and antioxidant properties of chitosan films incorporated with cinnamon oil. Int J Polym Sci 2015:1–8

    Article  CAS  Google Scholar 

  48. Zai-Qun L (2007) How many free radicals can be trapped by (hydroxylphenylimino)methylphenol in the free-radical-induced peroxidation of triolein in micelles? QSAR Comb Sci 26(4):488–495

    Article  CAS  Google Scholar 

  49. Zhang Y, Zou B, Chen Z, Pan Y, Wang H, Liang H, Yi X (2011) Synthesis and antioxidant activities of novel 4-Schiff base-7-benzyloxy-coumarin derivatives. Bioorg Med Chem Lett 21(22):6811–6815

    Article  CAS  PubMed  Google Scholar 

  50. Guo-qing Y, Wen-yue X, Wang H, Sun Y, Hua-Zhang L (2011) Preparation, water solubility and antioxidant activity of branched-chain chitosan derivatives. Carbohydr Polym 83(4):1787–1796

    Article  CAS  Google Scholar 

  51. Naik N, Vijay Kumar H, Harini ST (2011) Synthesis and antioxidant evaluation of novel indole-3-acetic acid analogues. Eur J Chem 2(3):337–341

    Article  CAS  Google Scholar 

  52. Park H, Kim S, Kim S, Song Y, Seung D, Hong K, Khang G, Lee D (2010) Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromol 11(8):2103–2108

    Article  CAS  Google Scholar 

  53. Kim S, Park H, Song Y, Hong D, Kim O, Jo E, Khang G, Lee D (2011) Reduction of oxidative stress by p-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant. Biomaterials 32(11):3021–3029

    Article  CAS  PubMed  Google Scholar 

  54. Ho K, Yazan LS, Ismail N, Ismail M (2009) Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol 33(2):155–160

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Han Y, Peng X (2014) Aromatic nitrogen mustard-based prodrugs: activity, selectivity and the mechanism of DNA cross-linking. Chem Eur J 20(24):7410–7418

    Article  CAS  PubMed  Google Scholar 

  56. Gillies ER, Fréchet JMJ (2003) A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun 14:1640–1641

    Article  Google Scholar 

  57. Souza AJD, Topp EM (2004) Release from polymeric prodrugs: linkages and their degradation. J Pharm Sci 93(8):1962–1979

    Article  CAS  PubMed  Google Scholar 

  58. Reddy MV, Reddy GCS, Jeong YT (2015) Molybdate sulfuric acid (MSA): an efficient reusable catalyst for the synthesis of tetrahydrobenzo[4, 5]imidazo[2,1-b]quinazolin-1(2H)-ones under solvent-free conditions and evaluation for their in vitro bioassay. RSC Adv 5(15):11423–11432

    Article  CAS  Google Scholar 

  59. Ashutosh B, Khan I, Vivek KB, Sun CK (2017) MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol 12:115–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Radha.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyriyalakshmi, P., Radha, K.V. Fabrication of chitosan-bis (4-formyl-2 methoxy phenyl carbonate) Schiff base nanoparticles and evaluation of their antioxidant and anticancer properties. Mol Biol Rep 46, 4333–4347 (2019). https://doi.org/10.1007/s11033-019-04887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04887-4

Keywords

Navigation