Skip to main content

Advertisement

Log in

Biopolymers: Applications in wound healing and skin tissue engineering

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Wound is a growing healthcare challenge affecting several million worldwide. Lifestyle disorders such as diabetes increases the risk of wound complications. Effective management of wound is often difficult due to the complexity in the healing process. Addition to the conventional wound care practices, the bioactive polymers are gaining increased importance in wound care. Biopolymers are naturally occurring biomolecules synthesized by microbes, plants and animals with highest degree of biocompatibility. The bioactive properties such as antimicrobial, immune-modulatory, cell proliferative and angiogenic of the polymers create a microenvironment favorable for the healing process. The versatile properties of the biopolymers such as cellulose, alginate, hyaluronic acid, collagen, chitosan etc have been exploited in the current wound care market. With the technological advances in material science, regenerative medicine, nanotechnology, and bioengineering; the functional and structural characteristics of biopolymers can be improved to suit the current wound care demands such as tissue repair, restoration of lost tissue integrity and scarless healing. In this review we highlight on the sources, mechanism of action and bioengineering approaches adapted for commercial exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

PDGF:

Platelet derived growth factor

VEGF:

Vascular endothelial growth factor

TGF-β:

Transforming growth factor-β

EGF:

Epidermal growth factor

RGD:

Arginine glycine and aspartate

MMP:

Matrix metalloproteinases

TIMP:

Tissue inhibitor of metalloproteinases

PCL:

Polycaprolactone

PVA:

Polyvinylalcohol

PLGA:

Poly(lactic-co-glycolic acid)

References

  1. WHO (2010) Injuries and violence: The facts. http://www.who.int/violence_injury_prevention/key_facts/en/. Accessed 8 Feb 2018

  2. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. Biomedicine 5:24–28

    Google Scholar 

  3. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    CAS  PubMed  Google Scholar 

  4. Gurtner GC, Werner S, Barrandon Y, Longaker MT(2008) Wound repair and regeneration. Nature 453:314–321

    CAS  PubMed  Google Scholar 

  5. Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, Part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25:304–315

    PubMed  PubMed Central  Google Scholar 

  6. Regan MC, Barbul A (1999) The cellular biology of wound healing. Wound Heal 1:3–17

    Google Scholar 

  7. Kirsner RS, Eaglstein WH (1993) The wound healing process. Dermatol Clin 11:629–640

    CAS  PubMed  Google Scholar 

  8. Diegelmann RF, Evans MC (2000) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 1:283–289

    Google Scholar 

  9. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    CAS  PubMed  Google Scholar 

  10. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 371:528–1542

    Google Scholar 

  11. Sezer AD, Cevher E (2011) Biopolymers as wound healing materials: challenges and new strategies. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, Rijeka

    Google Scholar 

  12. Golebiewska EM, Poole AW (2015) Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 29:153–162

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol 127:514–525

    CAS  PubMed  Google Scholar 

  14. Stramer BM, Mori R, Martin P (2007) The inflammation–fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Investig Dermatol 127:1009–1017

    CAS  PubMed  Google Scholar 

  15. Sephel GC, Woodward SC (2001) Repair, regeneration, and fibrosis. In: Rubin E (ed) Rubin’s pathology. Lippincott, Williams and Wilkins, Baltimore, 84–117

    Google Scholar 

  16. Bielefeld KA, Amini-Nik S, Alman BA (2013) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 70:2059–2081

    CAS  PubMed  Google Scholar 

  17. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  18. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson K, Hamm RL (2012) Factors that impair wound healing. J Am Coll Clin Wound 4:84–91

    Google Scholar 

  20. Jarbrink K, Ni G, Sonnergren H, Schmidtchen A, Pang C, Bajpai R, Car J (2017) The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev 6:15

    PubMed  PubMed Central  Google Scholar 

  21. Sarabahi S (2012) Recent advances in topical wound care. Ind J Plast Surg 45:379

    Google Scholar 

  22. Enoch S, Grey JE, Harding KG (2006) ABC of wound healing: non-surgical and drug treatments. BMJ 332:900

    PubMed  PubMed Central  Google Scholar 

  23. Dickinson LE, Gerecht S (2015) Engineered biopolymeric scaffolds for chronic wound healing. Front Physiol 7:341

    Google Scholar 

  24. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3:163–175

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    CAS  PubMed  Google Scholar 

  26. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Med 11:14002–140015

    Google Scholar 

  27. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith AM, Moxon S, Morris GA (2016) Biopolymers as wound healing materials. In: Ågren MS (ed) Wound healing biomaterials. Woodhead Publishing, Cambridge, pp 261–287

    Google Scholar 

  29. Rehfeld A, Nylander M, KarnovK (2017) Compendium of histology: a theoretical and practical guide. Springer, New York

    Google Scholar 

  30. Brett D (2008) A review of collagen and collagen-based wound dressings. Wounds 20:347–356

    PubMed  Google Scholar 

  31. Bellis SL (2011) Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32:4205–4210

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 7:445–464

    Google Scholar 

  33. Schwartz AJ, Wilson DA, Keegan KG, Ganjam VK, Sun Y, Weber KT, Zhang J (2002) Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses. Am J Vet Res 11:1564–1570

    Google Scholar 

  34. Rodríguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Mol Cell Res 1803:9–54

    Google Scholar 

  35. Brett D (2008) A review of collagen and collagen-based wound dressings. Wounds 12:347–356

    Google Scholar 

  36. Schmidt MM, Dornelles RC, Mello RO, Kubota EH, Mazutti MA, Kempka AP, Demiate IM (2016) Collagen extraction process. Int Food Res 23:913–922

    CAS  Google Scholar 

  37. Chattopadhyay S, Raines RT (2014) Review collagen based biomaterials for wound healing. Biopolymers 101:821–833

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  PubMed  Google Scholar 

  39. Deeken CR, White AK, Bachman SL, Ramshaw BJ, Cleveland DS, Loy TS, Grant SA (2011) Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res Part B 96:199–206

    CAS  Google Scholar 

  40. Marzec E, Pietrucha K (2018) Efficacy evaluation of electric field frequency and temperature on dielectric properties of collagen cross-linked by glutaraldehyde. Colloids Surf B 162:345–350

    CAS  Google Scholar 

  41. Davidenko N, Schuster CF, Bax DV, Raynal N, Farndale RW, Best SM, Cameron RE (2015) Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomaterial 25:131–142

    CAS  Google Scholar 

  42. Khew ST, Yang QJ, Tong YW (2008) Enzymatically crosslinked collagen-mimetic dendrimers that promote integrin-targeted cell adhesion. Biomaterials 29:3034–3045

    CAS  PubMed  Google Scholar 

  43. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    CAS  PubMed  Google Scholar 

  44. Kim MH, Park H, Nam HC, Park SR, Jung JY, Park WH (2018) Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym 181:579–586

    CAS  Google Scholar 

  45. Gomathi K, Gopinath D, Ahmed MR, Jayakumar R (2003) Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24:2767–2772

    CAS  PubMed  Google Scholar 

  46. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R (2004) Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25:1911–1917

    CAS  PubMed  Google Scholar 

  47. Chu J, Shi P, Yan W, Fu J, Yang Z, He C, Deng X, LiuH (2018) PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale 10:9547–9560

    CAS  PubMed  Google Scholar 

  48. Kang L, Liu X, Yue Z, Chen Z, Baker C, Winberg PC, Wallace GG (2018) Fabrication and in vitro characterization of electrochemically compacted collagen/sulfated xylorhamnoglycuronan matrix for wound healing applications. Polymers 10:1–13

    Google Scholar 

  49. Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X (2018) Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basket weave pattern of collagen fibrils in native skin. Biomater Sci 6:340–349

    CAS  PubMed  Google Scholar 

  50. Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA (2001) Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 20:463–473

    CAS  PubMed  Google Scholar 

  51. Kim JI, Kim CS (2018) Harnessing nanotopography of PCL/collagen nanocomposite membrane and changes in cell morphology coordinated with wound healing activity. Mater Sci Eng C 91:824–837

    CAS  Google Scholar 

  52. Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermenter. Appl Microbiol Biotechnol 67:45–51

    CAS  PubMed  Google Scholar 

  53. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioproc Biotech 4:2

    Google Scholar 

  54. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    CAS  PubMed  Google Scholar 

  55. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571

    CAS  PubMed  Google Scholar 

  56. Kucińska-Lipka J, Gubanska I, Janik H (2015) Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospective. Polym Bull 72:2399–2419

    Google Scholar 

  57. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with anti-staphylococcal activity for wound healing applications. Biomaterials 36:9557–9567

    Google Scholar 

  58. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    CAS  Google Scholar 

  59. Farag S, Ibrahim HM, Asker MS, Amr A, El-Shafaee A (2015) Impregnation of silver nanoparticles into bacterial cellulose: green synthesis and cytotoxicity. Int J PharmTech Res 12:651–661

    Google Scholar 

  60. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    CAS  PubMed  Google Scholar 

  61. Wen X, Zheng Y, Wu J, Yue L, Wang C, Luan J, Wu Z, Wang K (2015) In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog Nat Sci: Mater 25:197–203

    CAS  Google Scholar 

  62. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    CAS  PubMed  Google Scholar 

  63. Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 59:303–309

    CAS  Google Scholar 

  64. Mishra A, Chaudhary N (2010) Study of povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artif Organs 23:122–128

    Google Scholar 

  65. Bajpai SK, Pathak V, Soni B (2015) Minocycline-loaded cellulose nano whiskers/poly (sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 79:76–85

    CAS  PubMed  Google Scholar 

  66. Mohamad N, Amin MC, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    CAS  PubMed  Google Scholar 

  67. Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-Lucea C, Sanz-Garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 244:292–301

    CAS  PubMed  Google Scholar 

  68. Wagenhäuser MU, Mulorz J, Ibing W, Simon F, Spin JM, Schelzig H, Oberhuber A (2016) Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing. Sci Rep 6:32238

    PubMed  PubMed Central  Google Scholar 

  69. Lewis KM, Spazierer D, Urban MD, Lin L, Redl H, Goppelt A (2013) Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur Surg 45:213–220

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jeschke MG, Sandmann G, Schubert T, Klein D (2005) Effect of oxidized regenerated cellulose/collagen matrix on dermal and epidermal healing and growth factors in an acute wound. Wound Rep Regen 13:324–331

    Google Scholar 

  71. Hart J, Silcock D, Gunnigle S, Cullen B, Light ND, Watt PW (2002) The role of oxidised regenerated cellulose/collagen in wound repair: effects in vitro on fibroblast biology and in vivo in a model of compromised healing. Int J Biochem Cell Biol 34:1557–1570

    CAS  PubMed  Google Scholar 

  72. Xu S, Willcox M, Simmons P, Vehige J, Xie T, Garrett Q (2007) Carboxymethylcellulose stimulates rabbit corneal epithelial wound healing. Investig Ophthalmol Vis Sci 48:796

    Google Scholar 

  73. Loh EYX, Mohamad N, Fauzi MB, Amin MCIM (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8:2875

    PubMed  PubMed Central  Google Scholar 

  74. Pourali P, Razavianzadeh N, Khojasteh L, Yahyaei B (2018) Assessment of the cutaneous wound healing efficiency of acidic, neutral and alkaline bacterial cellulose membrane in rat. J Mater Sci: Mater Med 29:90

    Google Scholar 

  75. Fawal GF, Abu-Serie MM, Hassan MA, Elnouby MS (2018) Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int J Biol Macromol 111:649–659

    PubMed  Google Scholar 

  76. Liu Y, Sui Y, Liu C, Liu C, Wu M, Li Y (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym 188:27–36

    CAS  PubMed  Google Scholar 

  77. Ahn S, Chantre CO, Gannon AR, Lind JU, Campbell PH, Grevesse T, O’connor BB, Parker KK (2018) Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv Healthc Mater. https://doi.org/10.1002/adhm.201701175

    Article  PubMed  Google Scholar 

  78. Jones V, Grey JE, Harding KG (2006) ABC of wound healing: wound dressings. Brit Med J 332:7544–7777

    Google Scholar 

  79. Thomas S (2000) Alginate dressings in surgery and wound management. J Wound Care 9:56–60

    CAS  PubMed  Google Scholar 

  80. Yang D, Jones KS (2009) Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res Part B 90:411–418

    Google Scholar 

  81. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10020042

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mat Res Part A 60:217–223

    CAS  Google Scholar 

  83. Tarun K, Gobi N (2012) Calcium alginate/PVA blended nanofibre matrix for wound dressing. Indian J Fibre Text 37:127–132

    CAS  Google Scholar 

  84. Coşkun G, Karaca E, Ozyurtlu M, Özbek S, Yermezler A, Çavuşoğlu İ (2014) Histological evaluation of wound healing performance of electrospun poly (vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 24:1527–1536

    PubMed  Google Scholar 

  85. Pereira R, Carvalho A, Vaz DC, Gil MH, Mendes A, Bártolo P (2013) Development of novel alginate-based hydrogel films for wound healing applications. Int J Biol Macromol 52:221–230

    CAS  PubMed  Google Scholar 

  86. Murakami K, Aoki H, Nakamura S, Nakamura SI, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    CAS  PubMed  Google Scholar 

  87. Li X, Chen S, Zhang B, Li M, Diao K, Zhang Z, Li J, Xu Y, Wang X, Chen H (2012) In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm 7:110–119

    Google Scholar 

  88. Wang L, Khor E, Wee A, Lim LY (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res Part B 63:610–618

    CAS  Google Scholar 

  89. Roh DH, Kang SY, Kim JY, Kwon YB, Kweon HY, Lee KG, Park YH, Baek RM, Heo CY, Choe J, Lee JH (2006) Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Mater Sci 17:547–552

    CAS  Google Scholar 

  90. Xie H, Chen X, Shen X, He Y, Chen W, Luo Q, Ge W, Yuan W, Tang X, Hou D, Jiang D (2018) Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol 107:93–104

    CAS  PubMed  Google Scholar 

  91. Hu Y, Zhang Z, Li Y, Ding X, Li D, Shen C, Xu FJ (2018) Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun. https://doi.org/10.1002/marc.201800069

    Article  PubMed  Google Scholar 

  92. Zhou Q, Kang H, Bielec M, Wu X, Cheng Q, Wei W, Dai H (2018) Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr Polym 197:292–304

    CAS  PubMed  Google Scholar 

  93. Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T (2016) Hyaluronic acid in inflammation and tissue regeneration. Wounds 28:78–88

    PubMed  Google Scholar 

  94. Trabucchi E, Pallotta S, Morini M, Corsi F, Franceschini R, Casiraghi A, Pravettoni A, Foschi D, Minghetti P (2002) Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing. Int J Tissue React 24:65–71

    CAS  PubMed  Google Scholar 

  95. Price RD, Myers S, Leigh IM, Navsaria HA (2005) The role of hyaluronic acid in wound healing. Am J Clin Dermatol 6:393–402

    PubMed  Google Scholar 

  96. Prosdocimi M, Bevilacqua C (2012) Exogenous hyaluronic acid and wound healing: an updated vision. Panminerva Med 54:129–135

    CAS  PubMed  Google Scholar 

  97. Lu L, Leng Y, Cnen Y (2000) An experiment study on wound healing with exogenous hyaluronic acid. Chin J Plast Surg 16:30–33

    CAS  Google Scholar 

  98. Li H, Xue Y, Jia B, Bai Y, Zuo Y, Wang S, Zhao Y, Yang W, Tang H (2018) The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr Polym 188:92–100

    CAS  PubMed  Google Scholar 

  99. Huang J, Ren J, Chen G, Li Z, Liu Y, Wang G, Wu X (2018) Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mater Sci Eng C89:213–222

    Google Scholar 

  100. Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785

    CAS  PubMed  Google Scholar 

  101. Schanté CE, Zuber G, Herlin C, Vandamme TF (2011) Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 85:469–489

    Google Scholar 

  102. Wang TW, Sun JS, Wu HC, Tsuang YH, Wang WH, Lin FH (2006) The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27:5689–5697

    CAS  PubMed  Google Scholar 

  103. Zhu J, Li F, Wang X, Yu J, Wu D (2018) Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 10:13304–13316

    CAS  PubMed  Google Scholar 

  104. Hu M, Sabelman EE, Cao Y, Chang J, Hentz VR (2003) Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J Biomed Mater Res B 67:586–592

    Google Scholar 

  105. Yıldırım S, Özener H, Doğan B, Kuru B (2018) Effect of topically applied hyaluronic acid on pain and palatal epithelial wound healing: an examiner-masked, randomized, controlled clinical trial. J Periodontol 89:36–45

    Google Scholar 

  106. Roehrs H, Stocco JG, Pott F, Blanc G, Crozeta K, Meier MJ, Dias FA (2016) Dressings and topical agents containing hyaluronic acid for chronic wound healing. The Cochrane Library

  107. Shi L, Zhao Y, Xie Q, Fan C, Hilborn J, Dai J, Ossipov DA (2018) Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing. Adv Healthc Mater 7:1700973

    Google Scholar 

  108. Tamer TM, Valachová K, Hassan MA, Omer AM, El-Shafeey M, Eldin MM, Šoltés L (2018) Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater Sci Eng C 90:227–235

    CAS  Google Scholar 

  109. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10:27–37

    Google Scholar 

  110. Kozen BG, Kircher SJ, Henao J, Godinez FS, Johnson AS (2008) An alternative hemostatic dressing: comparison of CELOX, HemCon, and QuikClot. Acad Emerg Med 15:4–81

    Google Scholar 

  111. Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Seyfarth F, Schliemann S, Elsner P, Hipler UC (2008) Antifungal effect of high-and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida kruseiand Candida glabrata. Int J Pharmacol 353:139–148

    CAS  Google Scholar 

  113. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52:105–115

    CAS  PubMed  Google Scholar 

  114. Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644

    CAS  Google Scholar 

  115. Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann WP, Rogel S (2010) Antibacterial action of a novel functionalized chitosan-arginine against gram-negative bacteria. Acta Biomater 6:2562–2571

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Doulabi AH, Mirzadeh H, Imani M, SamadiN (2013) Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92:48–56

    Google Scholar 

  117. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M (2003) Photo crosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3334–3337

    Google Scholar 

  118. Alemdaroğlu C, Değim Z, Çelebi N, Zor F, Öztürk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327

    PubMed  Google Scholar 

  119. Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    CAS  PubMed  Google Scholar 

  120. Li X, Nan K, Li L, Zhang Z, Chen H (2012) In vivo evaluation of curcumin nanoformulation loaded methoxy poly (ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr Polym 88:84–90

    CAS  Google Scholar 

  121. Moura LI, Dias AM, Leal EC, Carvalho L, Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing. Acta Biomater 10:843–857

    CAS  PubMed  Google Scholar 

  122. Değim Z, Celebi N, Sayan H, Babül A, Erdoğan D, Take GA (2002) An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22:187–198

    PubMed  Google Scholar 

  123. Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12:2872–2880

    CAS  PubMed  Google Scholar 

  124. Huang X, Li LD, Lyu GM, Shen BY, Han YF, Shi JL, Teng JL, Feng L, Si SY, Wu JH, Liu YJ (2018) Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front 5:386–393

    CAS  Google Scholar 

  125. Concha M, Vidal A, Giacaman A, Ojeda J, Pavicic F, Oyarzun-Ampuero FA, Torres C, Cabrera M, Moreno-Villoslada I, Orellana SL (2018) Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: biological properties toward wound healing. J Biomed Mater Res B. https://doi.org/10.1002/jbm.b.34038

    Article  Google Scholar 

  126. Kim BS, Park JY, Kang HJ, Kim HJ, Lee J (2014) Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signaling. Biochem Biophys Res Commun 450:1333–1338

    CAS  PubMed  Google Scholar 

  127. O’Leary R, Rerek M, Wood EJ (2004) Fucoidan modulates the effect of transforming growth factor (TGF)-β1 on fibroblast proliferation and wound repopulation in in vitro models of dermal wound repair. Biol Pharm Bull 27:266–270

    PubMed  Google Scholar 

  128. Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH (2017) Promoting wound healing using low molecular weight Fucoidan in a full-thickness dermal excision rat model. Mar Drugs 15:112

    PubMed Central  Google Scholar 

  129. Zeng HY, Huang YC (2018) Basic fibroblast growth factor released from fucoidan-modified chitosan/alginate scaffolds for promoting fibroblasts migration. J Polym Res 25:83

    Google Scholar 

  130. Nair AV, Raman M, Doble M (2016) Cyclic β-(1→ 3)(1→ 6) glucan/carrageenan hydrogels for wound healing applications. RSC Adv 100:545–553

    Google Scholar 

  131. Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J, Gurtner GC (2010) Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng A 17:631–644

    Google Scholar 

  132. Kim HL, Lee JH, Lee MH, Kwon BJ, Park JC (2012) Evaluation of electrospun (1, 3)-(1, 6)-β-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing. Tissue Eng A 18:2315–2322

    CAS  Google Scholar 

  133. Matou S, Colliec-Jouault S, Galy-Fauroux I, Ratiskol J, Sinquin C, Guezennec J, Fischer AM, Helley D (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem Pharm 69:751–759

    CAS  PubMed  Google Scholar 

  134. Maalej H, Moalla D, Boisset C, Bardaa S, Ayed HB, Sahnoun Z, Rebai T, Nasri M, Hmidet N (2014) Rhelogical, dermal wound healing and in vitro antioxidant properties of exopolysaccharide hydrogel from Pseudomonas stutzeri AS22. Colloids Surf B 123:814–824

    CAS  Google Scholar 

  135. Trabelsi I, Ktari N, Slima SB, Triki M, Bardaa S, Mnif H, Salah RB (2017) Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. Int J Biol Macromol 103:94–201

    Google Scholar 

  136. Priyanka P, Arun AB, Ashwini P, Rekha PD (2016) Functional and cell proliferative properties of an exopolysaccharide produced by Nitratireductor sp. PRIM-31. Int J Biol Macromol 85:400–404

    CAS  PubMed  Google Scholar 

  137. Priyanka P, Arun AB, Ashwini P, Rekha PD (2015) Versatile properties of an exopolysaccharide R-PS18 produced by Rhizobium sp. PRIM-18. Carbohydr Polym 126:215–221

    CAS  PubMed  Google Scholar 

  138. He Y, Ye M, Du Z, Wang H, Wu Y, Yang L (2014) Purification, characterization and promoting effect on wound healing of an exopolysaccharide from Lachnum YM405. Carbohydr Polym 105:169–176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sahana T. G. acknowledges DST-INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Rekha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahana, T.G., Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 45, 2857–2867 (2018). https://doi.org/10.1007/s11033-018-4296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4296-3

Keywords

Navigation