Skip to main content
Log in

Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this work was to produce and characterize solid lipid nanoparticles (SLN) containing levothyroxine sodium for oral administration, and to evaluate the kinetic release of these colloidal carriers. SLNs were prepared by microemulsion method. The particle size and zeta potential of levothyroxine sodium-loaded SLNs were determined to be around 153 nm,−43 mV (negatively charged), respectively by photon correlation spectroscopy. The levothyroxine entrapment efficiency was over 98 %. Shape and surface morphology were determined by TEM and SEM. They revealed fairly spherical shape of nanoparticles.SLN formulation was stable over a period of 6 months. There were no significant changes in particle size, zeta potential and polydispersity index and entrapment efficiency, indicating that the developed SLNs were fairly stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander KS, Kothapalli MR, Dollimor D (1997) Stability of an extemporaneously formulated levothyroxine sodium syrup compounded from commercial tablets. Int J Pharm Compd 1(1):60–64

    CAS  PubMed  Google Scholar 

  2. Ali H, El-Sayed K, Sylvester PW, Nazzal S (2010) Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf B 77(2):286–297

    Article  CAS  Google Scholar 

  3. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490

    Article  CAS  PubMed  Google Scholar 

  4. Arza RAK, Gonugunta CSR, Veerareddy PR (2009) Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. Am Assoc Pharm Sci 1(10):220–226

    Google Scholar 

  5. Barzegar-Jalali M, Adibkia K, Valizadeh H, Siahi-Shadbad MR, Nokhodchi A, Omidi Y, Mohammadi G, Hallaj-Nezhadi S, Hasan M (2008) Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci 11(1):167–177

    CAS  PubMed  Google Scholar 

  6. Blakesley VA (2005) Current methodology to assess bioequivalence of levothyroxine sodium products is inadequate. J Am Assoc Pharm Sci 7(1):E42–E46

    CAS  Google Scholar 

  7. Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR (2003) Duodenal administration of solid lipid nanoparticles loaded with different percentages of Tobramycin. J Pharm Sci 92(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  8. Chen DB, Yang TZ, Lu WL, Zhang Q (2001) In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 49(11):1444–1447

    Article  CAS  PubMed  Google Scholar 

  9. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133

    Article  CAS  PubMed  Google Scholar 

  10. Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. Eur J Pharm Biopharm 66(1):34–41

    Article  CAS  PubMed  Google Scholar 

  11. Ekambaram P, Hasan-Sathali AA, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102

    CAS  Google Scholar 

  12. Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A (2012) Lipospheres and pro-nanolipospheres for delivery of poorly water soluble compounds. Chem Phys Lipids 165(4):438–453

    Article  CAS  PubMed  Google Scholar 

  13. Freitas C, Muller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int J Pharm 168(2):221–229

    Article  CAS  Google Scholar 

  14. Garcia-Fuentes M, Torres D, Alonso MJ (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B 27(2–3):159–168

    Google Scholar 

  15. Heiati H, Tawashi R, Phillips NC (1998) Solid lipid nanoparticles as drug carriers II. Plasma stability and biodistribution of solid lipid nanoparticles containing the lipophilic prodrug 3 %-azido-3 %-deoxythymidinepalmitate in mice. Int J Pharm 174(4):71–80

    Article  CAS  Google Scholar 

  16. Heydenreich AV, Westmeier R, Pedersen N, Poulsen HS, Kristensen HG (2003) Preparation and purification of cationic solid lipid nanospheres-effects on particle size, physical stability and cell toxicity. Int J Pharm 254(1):83–87

    Article  CAS  PubMed  Google Scholar 

  17. Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B 45(3–4):167–173

    Article  CAS  Google Scholar 

  18. Kamble MS, Vaidya KK, Bhosale AV, Chaudhari PD (2002) Solid lipid nanoparticles and nanostructure lipid carriers—an over view. Int J Pharm Chem Biol Sci 2(4):681–691

    Google Scholar 

  19. Kashanian S, Hemati Azandaryani A, Derakhshandeh K (2011) New surface modified solid lipid nanoparticles by using N-glutarylphosphatidylethanolamine as outer shell. Int J Nanomed 6(1–9):1–9

    Google Scholar 

  20. Kaura IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109

    Article  Google Scholar 

  21. Lilja JJ, Laitinen K, Neuvonen PJ (2005) Effects of grapefruit juice on the absorption of levothyroxine. Br J Clin Pharmacol 60(3):337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Li XW, Lin XH, Zheng LQ, Yu L, Lv F, Zhang Q, Liu WC (2008) Effect of poly(ethylene glycol) stearate on the phase behavior of monocaprate/Tween80/water system and characterization of poly(ethylene glycol) stearate-modified solid lipid nanoparticles. Colloids Surf A 317(1–3):352–359

    Article  CAS  Google Scholar 

  23. Liu J, Gong T, Wang C, Zhong Z, Zhang Z (2007) Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 340(1–2):153–162

    Article  CAS  PubMed  Google Scholar 

  24. Mehnert W, Mader K (2001) Solid lipid nanoparticles Production, characterization and applications. Adv Drug Deliv Rev 47(2-3):165–196

    Article  CAS  PubMed  Google Scholar 

  25. Muller RH, Mader K, Gohla K (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  CAS  PubMed  Google Scholar 

  26. Parhi R, Suresh P (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2(1):211–227

    CAS  Google Scholar 

  27. Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62(2):155–162

    Article  CAS  PubMed  Google Scholar 

  28. Ruktanonchai U, Bejrapha P, Sakulkhu U, Opanasopit P, Bunyapraphatsara N, Junyaprasert V, Puttipipatkhachorn S (2009) Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. Am Assoc Pharm Sci 10(1):227–234

    CAS  Google Scholar 

  29. Sarmento B, Martins S, Ferreira D, Souto BE (2007) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2(4):743–749

    CAS  Google Scholar 

  30. Singhvi G, Singh M (2011) Review: in vitro drug release characterization. Int J Pharm Stud Res 2(1):77–84

    Google Scholar 

  31. Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2(3):289–300

    Google Scholar 

  32. Varelas CG, Dixon DG, Steiner CA (1995) Zero-order release from biphasic polymer hydrogels. J Control Release 34(3):185–192

    Article  CAS  Google Scholar 

  33. Yang S, Zhu J, Lu Y, Liang B, Yang C (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16(5):751–757

    Article  CAS  PubMed  Google Scholar 

  34. Zara GP, Bargoni A, Cavalli R, Fundaro A, Vighetto D, Gasco MR (2002) Pharmacokinetics and tissue distribution of Idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J Pharma Sci 91(5):1324–1333

    Article  CAS  Google Scholar 

  35. Zhang Q, Yie G, Li Y, Yang Q, Nagai T (2000) Studies on the cyclosporin A loaded stearic acid nanoparticles. Int J Pharm 200(2):153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kashanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostami, E., Kashanian, S. & Azandaryani, A.H. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep 41, 3521–3527 (2014). https://doi.org/10.1007/s11033-014-3216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3216-4

Keywords

Navigation