Skip to main content

Advertisement

Log in

Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is one of the most important tropical crops showing tolerance to abiotic stress and adaptations to a wide range of environmental conditions. Here, we aimed to isolate and characterize the full-length cDNA and genomic sequences of a cassava translationally controlled tumor protein gene (MeTCTP), and evaluate its potential role in response to salt stress. The MeTCTP full-length cDNA sequence encodes for a deduced protein with 168 amino acid residues, with theoretical isoelectric point and molecular weight of 4.53 and 19 kDa, respectively, containing two putative signatures of TCTP family and one site for myristoylation. The MeTCTP genomic sequence includes four introns and five exons within a 1,643 bp coding region, and a 264 bp partial promoter sequence containing several putative cis-acting regulatory elements, among them, two putative GT-1 motifs, which may be related to response to sodium chloride (NaCl) and pathogen infection. Semi-quantitative RT-PCR assays showed that MeTCTP transcripts were higher in roots than leaves, and were significantly increased in detached leaves treated with NaCl. Furthermore, the recombinant MeTCTP conferred a protective function against salt stress in bacterial cells. We report for the first time the molecular cloning and characterization of a cassava TCTP with potential role in salt-stress response. Since salinity is one the most important abiotic factors affecting the production of crops worldwide, the MeTCTP gene could be a candidate gene for generation of salt tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yenofsky R, Bergmann I, Brawerman G (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci USA 79:5876–5880

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez JC, Schaller D, Ravier F, Golaz O, Jaccoud S, Belet M, Wilkins MR, James R, Deshusses J, Hochstrasser D (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18:150–155

    Article  CAS  PubMed  Google Scholar 

  3. Woo HH, Hawes MC (1997) Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L. Plant Mol Biol 35:1045–1051

    Article  CAS  PubMed  Google Scholar 

  4. Thiele H, Berger M, Skalweit A, Thiele BJ (2000) Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267:5473–5481

    Article  CAS  PubMed  Google Scholar 

  5. Gnanasekar M, Rao KV, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121:107–118

    Article  CAS  PubMed  Google Scholar 

  6. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385

    Article  CAS  PubMed  Google Scholar 

  7. Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 3:683–689

    Article  Google Scholar 

  8. Hinojosa-Moy J, Xoconostle-Cázares B, Piedra-Ibarra E, Méndez-Tenorio A, Lucas WJ, Ruiz-Medrano R (2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol 66:472–483

    Article  Google Scholar 

  9. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, Yang-Yen HF (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18:2525–2532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788

    Article  CAS  PubMed  Google Scholar 

  11. Berkowitz O, Jost R, Pollmannb S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430–3447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 107:16384–16389

    Article  CAS  PubMed  Google Scholar 

  13. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nakkaew A, Chotigeat W, Phongdara A (2010) Molecular cloning and expression of EgTCTP, encoding a calcium binding protein, enhances the growth of callus in oil palm (Elaeis guineensis, Jacq). Songklanakarin J Sci Technol 32:565–569

    Google Scholar 

  15. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112:1257–1271

    CAS  PubMed  Google Scholar 

  16. Sage-Ono K, Ono M, Harada H, Kamada H (1998) Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol 39:357–360

    Article  CAS  PubMed  Google Scholar 

  17. Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756

    Article  CAS  PubMed  Google Scholar 

  18. Vincent D, Ergül A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    Article  CAS  PubMed  Google Scholar 

  19. Qin X, Gao F, Zhang J, Gao J, Lin S, Wang Y, Jiang L, Liao Y, Wang L, Jia Y, Tang L, Xu Y, Chen F (2011) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 38:3107–3112

    Article  CAS  PubMed  Google Scholar 

  20. Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nascimento SB, Cascardo JCM, Menezes IC, Duarte MLR, Darnet S, Harada ML, de Souza CRB (2009) Identifying sequences potentially related to resistance response of Piper tuberculatum to Fusarium solani f. sp. piperis by suppression subtractive hybridization. Protein Pept Lett 16:1429–1434

    Article  CAS  PubMed  Google Scholar 

  22. Alfenas-Zerbini P, Maia IG, Fávaro RD, Cascardo JC, Brommonschenkel SH, Zerbini FM (2009) Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Interact 22:352–361

    Article  CAS  PubMed  Google Scholar 

  23. Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD (2008) Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. Theor App Genet 116:501–516

    Article  CAS  Google Scholar 

  24. Cao B, Lu Y, Chen G, Lei J (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tissue Organ Cult 103:217–226

    Article  CAS  Google Scholar 

  25. Kim YM, Han YJ, Hwang OJ, Lee SS, Shin AY, Kim SY, Kim JI (2012) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33:617–626

    Article  CAS  PubMed  Google Scholar 

  26. de Souza CR, Carvalho LJ, de Mattos Cascardo JC (2004) Comparative gene expression study to identify genes possibly related to storage root formation in cassava. Protein Pept Lett 11:577–582

    Article  PubMed  Google Scholar 

  27. El-Sharkawy MA, Cadavid LF (2002) Response of cassava to prolonged water stress imposed at different stages of growth. Exp Agric 38:333–350

    Article  Google Scholar 

  28. Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  CAS  PubMed  Google Scholar 

  30. Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7(1):66

    Article  PubMed Central  PubMed  Google Scholar 

  31. Arango J, Wüst F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232:1251–1262

    Article  CAS  PubMed  Google Scholar 

  32. Costa CNM, Santa Brígida AB, Borges BN, Menezes-Neto MA, Carvalho LJCB, de Souza CRB (2011) Levels of MeLEA3, a cDNA sequence coding for an atypical late embryogenesis abundant protein in cassava, increase under in vitro salt stress treatment. Plant Mol Biol Rep 29:997–1005

    Article  CAS  Google Scholar 

  33. Reis SP, Tavares LSC, Costa CNM, Santa-Brígida AB, de Souza CRB (2012) Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava. Mol Biol Rep 39:6513–6519

    Article  CAS  PubMed  Google Scholar 

  34. Jones JDG, Dunsumuir P, Bedbrook J (1995) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:2411–2418

    Google Scholar 

  35. Chang S, Puryear J, CairneY J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  36. de Souza CR, Aragão FJ, Moreira EC, Costa CN, Nascimento SB, Carvalho LJ (2009) Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet Mol Res 8:334–344

    Article  PubMed  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  40. Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    CAS  PubMed  Google Scholar 

  41. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA-elements (PLACE). Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2012) Geneious v5.4. http://www.geneious.com/. Accessed Sept 2012

  44. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  45. Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Redd MK (2012) Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39:7163–7174

    Article  CAS  PubMed  Google Scholar 

  46. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501

    Article  CAS  PubMed  Google Scholar 

  47. Jung J, Kim M, Kim MJ, Kim J, Moon J, Lim JS, Kim M, Lee K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na, K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279:49868–49875

    Article  CAS  PubMed  Google Scholar 

  48. Witte CP, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T (2010) Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem 285:9740–9748

    Article  CAS  PubMed  Google Scholar 

  49. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee S-H, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor 1. Plant Physiol 135:2150–2161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  51. Vijaybhaskar V, Subbiah V, Kaur J, Vijayakumari P, Siddiqi I (2008) Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 33:185–193

    Article  CAS  PubMed  Google Scholar 

  52. Vieweg MF, Frühling M, Quandt HJ, Heim U, Bäumlein H, Pühler A, Küster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17:62–69

    Article  CAS  PubMed  Google Scholar 

  53. Fehlberg V, Vieweg MF, Dohmann EM, Hohnjec N, Pühler A, Perlick AM, Küster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806

    Article  CAS  PubMed  Google Scholar 

  54. You MK, Hur CG, Ahn YS, Suh MC, Jeong BC, Shin JS, Bae JM (2003) Identification of genes possibly related to storage root induction in sweet potato. FEBS Lett 536:101–105

    Article  CAS  PubMed  Google Scholar 

  55. de Souza CR, Carvalho LJ, de Almeida ER, Gander ES (2006) A cDNA sequence coding for a glutamic acid-rich protein is differentially expressed in cassava storage roots. Protein Pept Lett 13:653–657

    Article  PubMed  Google Scholar 

  56. Lopez AP, Franco AR (2006) Cloning and expression of cDNA encoding translationally controlled tumor protein from strawberry fruits. Biol Plant 50:447–449

    Article  CAS  Google Scholar 

  57. Masura SS, Parveez GK, Ti LL (2011) Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene. Plant Physiol Biochem 49:701–708

    Article  CAS  PubMed  Google Scholar 

  58. Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386:333–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Universidade Federal do Pará (UFPA), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Regina Batista de Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 Primers sequences used in the isolation and characterization of MeTCTP. (DOC 33 kb)

11033_2014_3028_MOESM2_ESM.doc

Supplementary Fig. 1 The full-length cDNA sequence and deduced amino acid sequence of MeTCTP. Start and stop codons are boxed. The potential signal of polyadenilation is underlined. This nucleotide sequence was registered in the NCBI GenBank under accession no. JX855123. (DOC 39 kb)

11033_2014_3028_MOESM3_ESM.doc

Supplementary Fig. 2 Genomic sequence of MeTCTP gene containing coding region and partial promoter sequences. Putative cis-acting regulatory elements are highlighted. Deduced amino acid sequence is in bold capital letters. Introns are in lower case with conserved dinucleotides GT and AG underlined. This nucleotide sequence was registered on GenBank under accession no. JX855122. (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santa Brígida, A.B., dos Reis, S.P., de Nazaré Monteiro Costa, C. et al. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 41, 1787–1797 (2014). https://doi.org/10.1007/s11033-014-3028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3028-6

Keywords

Navigation