Skip to main content

Advertisement

Log in

Analysis of stomach bacterial communities in Australian feral horses

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We investigated the community structure of bacteria that populate the stomach of the Brumby, a breed of feral horses from the Australian outback. Using a 16S rRNA gene clone library, we identified 155 clones that were assigned to 26 OTUs based on a 99.0 % sequence identity cutoff. Two OTUs represented 73.5 % of clones, while 18 OTUs were each assigned only a single clone. Four major bacterial types were identified in the Brumby stomach: Lactobacillaceae, Streptococcaceae, Veillonellaceae and Pasteurellaceae. The first three groups, which represented 98.1 % of the Brumby stomach library clones, belonged to the bacterial phylum Firmicutes. We found that 49.7 % of clones were related to bacterial species previously identified in the equine hindgut, and that 44.5 % of clones were related to symbiotic bacterial species identified in the mouth or throat of either horses or other mammals. Our results indicated that the composition of mutualistic bacterial communities of feral horses was consistent with other studies on domestic horses. In addition to bacterial sequences, we also identified four plastid 16S rRNA gene sequences, which may help in further characterizing the type of vegetation consumed by Brumby horses in their natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gooding CD (1983) Horse and donkey, family Equidae. In: Strahan R (ed) The Australian museum complete book of Australian mammals. Angus and Robertson, Sydney, pp 490–493

    Google Scholar 

  2. Dobbie WR, Berman DM, Braysher ML (1993) Managing vertebral pests: feral horses. Australian Government Publishing Service, Canberra

    Google Scholar 

  3. Jones SL, Snyder JR, Spier SJ (1998) Physiology of the large intestine. In: Reed SM, Bayly WM (eds) Equine internal medicine. W.B. Saunders, Philadelphia, PA, pp 651–655

    Google Scholar 

  4. Argenzio RA, Southworth M, Stevens CE (1974) Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Physiol 226:1043–1050

    PubMed  CAS  Google Scholar 

  5. Argenzio RA (1975) Functions of the equine large intestine and their interrelationship in disease. Cornell Vet 65:303–327

    PubMed  CAS  Google Scholar 

  6. Al Jassim RAM (2006) Supplementary feeding of horses with processed sorghum grains and oats. Anim Feed Sci Technol 125:33–44

    Article  Google Scholar 

  7. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    PubMed  CAS  Google Scholar 

  8. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. J Parenter Enternal Nutr 21:357–365

    Article  CAS  Google Scholar 

  9. Cummings JH, Macfarlane GT (1997) Colonic microflora: nutrition and health. Nutrition 13:476–478

    Article  PubMed  CAS  Google Scholar 

  10. Hobson PN, Stewart CS (1997) The rumen microbial ecosystem, 2nd edn. Blackie Academic and Professional, New York

    Book  Google Scholar 

  11. Fujisawa T, Itoh K, Mitsuoka T (1993) Lactobacilli in the alimentary tract of horse. Bifidobacteria Microflora 12:87–90

    Google Scholar 

  12. Morotomi M, Yuki N, Kada Y, Kushiro A, Shimazaki T, Watanabe K, T Y (2002) Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from feaces of healthy horses. Int J Syst Evol Microbiol 52:211–214

    PubMed  Google Scholar 

  13. Al Jassim RAM, Scott PT, Trebbin AL, Trott D, Pollitt CC (2005) The genetics diversity of lactic acid producing bacteria in the equine gastrointestinal tract. FEMS Microbiol Lett 248:75–81

    Article  PubMed  CAS  Google Scholar 

  14. Endo A, Okada S, Morita H (2007) Molecular profiling of Lactobacillus, Streptococcus, and Bifidobacterium species in feces of active racehorses. J Gen Appl Microbiol 53:191–200

    Article  PubMed  CAS  Google Scholar 

  15. Morita H et al (2007) Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. Int J Syst Evol Microbiol 57:2836–2839

    Article  PubMed  CAS  Google Scholar 

  16. Endo A, Roos S, Satoh E, Morita H, Okada S (2008) Lactobacillus equigenerosi sp. nov., a coccoid species isolated from faeces of thoroughbred racehorses. Int J Syst Evol Microbiol 58:914–918

    Article  PubMed  Google Scholar 

  17. Morita H et al (2009) Lactobacillus hayakitensis, L. equigenerosi and L. equi, predominant lactobacilli in the intestinal flora of healthy thoroughbreds. Anim Sci J 80:339–346

    Article  PubMed  CAS  Google Scholar 

  18. Yuki N, Shimazaki T, Kushiro A, Watanabe K, Uchida K, Yuyama T, Morotomi M (2000) Colonization of the stratified squamous epithelium of the nonsecreting area of horse stomach by Lactobacilli. Appl Environ Microbiol 66:5030–5034

    Article  PubMed  CAS  Google Scholar 

  19. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812

    PubMed  CAS  Google Scholar 

  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175

  21. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  22. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  23. Godoy-Vitorino F et al (2008) Bacterial community in the crop of the Hoatzin, a neotropical folivorous flying bird. Appl Environ Microbiol 74:5905–5912

    Article  PubMed  CAS  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  25. Felsenstein J (2006) PHYLIP (Phylogeny Inference Package) documentation files, version 3.66. Department of Genome Sciences, University of Washington, Seattle

  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  28. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  29. Fitzgerald RJ, Keyes PH (1960) Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 61:9–19

    PubMed  CAS  Google Scholar 

  30. Coykendall AL (1977) Proposal to elevate the subspecies of Streptococcus mutans to species status, based on their molecular composition. Int J Syst Bacteriol 27:26–30

    Article  Google Scholar 

  31. Hughes CV, Kolenbrander PE, Andersen RN, Moore LV (1988) Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology. Appl Environ Microbiol 54:1957–1963

    PubMed  CAS  Google Scholar 

  32. Christensen H, Bisgaard M, Olsen JE (2002) Reclassification of equine isolates previously reported as Actinobacillus equuli, variants of A. equuli, Actinobacillus suis or Bisgaard taxon 11 and proposal of A. equuli subsp. equuli subsp. nov. and A. equuli subsp. haemolyticus subsp. nov. Int J Syst Evol Microbiol 52:1569–1576

    Article  PubMed  CAS  Google Scholar 

  33. Bailey SR, Baillon M-L, Rycroft AN, Harris PA, Elliott J (2003) Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Appl Environ Microbiol 69:2087–2093

    Article  PubMed  CAS  Google Scholar 

  34. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  PubMed  CAS  Google Scholar 

  35. Yuyama T, Takai S, Tsubaki S, Kado Y, Morotomi M (2004) Evaluation of a host-specific Lactobacillus probiotics in training horses and neonatal foals. J Intest Microbiol 18:101–106

    Google Scholar 

  36. Al Jassim RAM, McGowan T, Andrews F, McGowan C (2008) Gastric ulceration in horses, the role of bacteria and lactic acid. Rural Industries Research and Development Corporation, Publication No. 08/033

  37. Meyer W, Kacza J, Schnapper A, Verspohl J, Hornickel I, Seeger J (2010) A first report on the microbial colonisation of the equine oesophagus. Ann Anat 192:42–51

    Article  PubMed  Google Scholar 

  38. Whitford MF, Foster RJ, Beard CE (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    Article  PubMed  CAS  Google Scholar 

  39. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    Article  CAS  Google Scholar 

  40. Sundset MA, Praesteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbiol Ecol 54:424–438

    Article  Google Scholar 

  41. Yang S, Ma S, Chen J, Mao H, He Y, Xi D et al (2010) Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol Biol Rep 37:2063–2073

    Article  PubMed  CAS  Google Scholar 

  42. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  PubMed  CAS  Google Scholar 

  43. Daly K, Stewart CS, Flint HJ, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151

    Article  CAS  Google Scholar 

  44. Daly K, Shirazi-Beechey SP (2003) Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora. FEMS Microbiol Ecol 44:243–252

    Article  PubMed  CAS  Google Scholar 

  45. Willing B, Vörös A, Roos S, Jones C, Jansson A, Lindberg JE (2009) Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet J 41:908–914

    Article  PubMed  CAS  Google Scholar 

  46. Berman DM (1991) Chapter 4: Resources for cattle and horses. The ecology of feral horses in central Australia. PhD Thesis, University of New England, Armidale, Australia

Download references

Acknowledgments

The authors would like to thank Dr. Brian A. Hampson from The University of Queensland for the Brumby horse gut samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Denis G. Wright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Pierre, B., de la Fuente, G., O’Neill, S. et al. Analysis of stomach bacterial communities in Australian feral horses. Mol Biol Rep 40, 369–376 (2013). https://doi.org/10.1007/s11033-012-2070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2070-5

Keywords

Navigation