Skip to main content
Log in

Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patade VY, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4(3):125–136

    Article  Google Scholar 

  2. Patade VY, Kumari M, Ahmed Z (2011) Chemical seed priming as a simple technique to impart cold and salt stress tolerance in capsicum. J Crop Improv 25(5):497–503

    Article  Google Scholar 

  3. Patade VY, Kumari M, Meher LC, Arif M, Ahmed Z (2012) Chemical seed priming as an efficient approach for developing cold tolerance in Jatropha. J Crop Improv 26(1):140–149

    Article  Google Scholar 

  4. Wahid A, Noreen A, Basra SMA, Gelani S, Farooq M (2008) Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Bot Stud 49:343–350

    CAS  Google Scholar 

  5. Patade VY, Bhargava S, Penna S (2009) Halopriming imparts tolerance in sensitive sugarcane cultivar to salt and PEG induced drought stress. Agri Ecosyst Environ 134:24–28

    Article  CAS  Google Scholar 

  6. Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hortic 560:285–292

    CAS  Google Scholar 

  7. McDonald MB, Black MJ, Bewley JD (2000) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  8. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2011) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. doi:10.1007/s11033-011-0823-1

    Google Scholar 

  9. Mantri NL, Pang ECK, Ford R (2010) Molecular biology for stress management. In: Yadav SS, McNeil DN, Weeden N, Patil SS (eds) Climate change and management of cool season grain legume crops. Springer, Heidelberg, pp 377–408

    Chapter  Google Scholar 

  10. Srivastava AK, Ramaswamy NK, Mukopadhyaya R, Jincy MGC, D’Souza SF (2009) Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea. Ann Bot 103(3):403–410

    Article  PubMed  CAS  Google Scholar 

  11. Srivastava AK, Ramaswamy NK, Suprasanna P, D’Souza SF (2010) Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance. Ann Bot 106(5):663–674

    Article  PubMed  CAS  Google Scholar 

  12. Afzal I, Basra SMA, Hameed A, Farooq M (2006) Physiological enhancements for alleviation of salt stress in wheat. Pak J Bot 38(5):1649–1659

    Google Scholar 

  13. Rozbeh F, Farzad S (2006) The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions. Indian J Crop Sci 1(1–2):74–78

    Google Scholar 

  14. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  15. Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18(1):107–114

    PubMed  CAS  Google Scholar 

  16. Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. PNAS 101(16):6309–6314

    Article  PubMed  CAS  Google Scholar 

  17. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  18. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49(6):865–879

    Article  PubMed  CAS  Google Scholar 

  19. Zheng J, Zou X, Mao Z, Xie B (2011) A novel pepper (Capsicum annuum L.) WRKY gene, CaWRKY30, is involved in pathogen stress responses. J Plant Biol 54:329–337

    Article  CAS  Google Scholar 

  20. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210

    Article  PubMed  CAS  Google Scholar 

  21. Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential1[W][OA]. Plant Physiol 157:292–304

    Article  PubMed  CAS  Google Scholar 

  22. Mani S, Van de Cotte B, Montagu MV, Verbruggen N (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128(1):73–83

    Article  PubMed  CAS  Google Scholar 

  23. Zhuang GQ, Li B, Guo HY, Liu JL, Chen F (2011) Molecular cloning and characterization of P5CS gene from Jatropha curcas L. Afr J Biotechnol 10(66):14803–14811

    Article  CAS  Google Scholar 

  24. Neffar F, Mare C, Hamenna B (2011) Study of barley (Hordeum vulgare L) transcript profiles under water stress conditions. Aust J Basic Appl Sci 5(12):1481–1488

    CAS  Google Scholar 

  25. Zhu B, Chen TH, Li PH (1995) Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 108(3):929–937

    Article  PubMed  CAS  Google Scholar 

  26. Goyary D (2009) Transgenic crops, and their scope for abiotic stress environment of high altitude: biochemical and physiological perspectives. DRDO Sci Spectr 195–201. http://drdo.gov.in/drdo/pub/dss/2009/main/35-DIBR.pdf

  27. Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56(411):417–423

    Article  PubMed  CAS  Google Scholar 

  28. Patade VY, Bhargava S, Suprasanna P (2012) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39(3):3311–3318

    Article  PubMed  CAS  Google Scholar 

  29. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of Ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  PubMed  CAS  Google Scholar 

  30. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–233

    Article  PubMed  CAS  Google Scholar 

  31. Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38(7):4823–4832

    Article  PubMed  CAS  Google Scholar 

  32. Seppa¨nen MM, Cardi T, Hyo¨kki MB, Pehu E (2000) Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Sci 153:125–133

    Article  Google Scholar 

  33. Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165(6):1221–1227

    Article  CAS  Google Scholar 

  34. Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis glutathione reductase1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  PubMed  CAS  Google Scholar 

  35. McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    Article  PubMed  CAS  Google Scholar 

  36. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of MiR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  37. Wu G, Wilen RW, Robertson AJ, Gusta LV (1999) Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol 120:513–520

    Article  PubMed  CAS  Google Scholar 

  38. Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  PubMed  Google Scholar 

  39. Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S (2009) Annexins—calcium- and membrane-binding proteins in the plant kingdom Potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochemica Polonica 56(2):199–210

    CAS  Google Scholar 

  40. Clark GB, Roux SJ (1995) Annexins of Plant Cells. Plant Physiol 109:1133–1139

    Article  PubMed  CAS  Google Scholar 

  41. Hofmann A (2004) Annexins in the plant kingdom: perspectives and potentials. Annexins 1:51–61

    CAS  Google Scholar 

  42. Aroca R, Amodeo G, Fern′andez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  PubMed  CAS  Google Scholar 

  43. Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  Google Scholar 

  44. Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate-4-hydroxylase expression in Arabidopsis’ regulation in response to development and the environment. Plant Physiol 113:729–738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Yadav Patade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patade, V.Y., Khatri, D., Manoj, K. et al. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Mol Biol Rep 39, 10603–10613 (2012). https://doi.org/10.1007/s11033-012-1948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1948-6

Keywords

Navigation