Skip to main content

Advertisement

Log in

Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heavy metal pollution is a serious environmental problem in agricultural soils since the uptake of heavy metals by plants represents an entry point into the food chain and is influenced by the form and amount of nitrogen (N) fertilization. Here we studied the defense responses in soybean roots exposed to ions of cadmium (applied as 50 mg l−1 Cd2+) when combined with an excessive dose of N in form of NH4NO3. Our data indicate that despite of stunted root growth, several stress symptoms typically observed upon cadmium treatment, e.g. peroxidation of lipid membranes or activation of chitinase isoforms, become suppressed at highly excessive N. At the same time, other defense mechanisms such as catalases and proline accumulation were elevated. Most importantly, the interplay of ongoing responses resulted in a decreased uptake of the metal into the root tissue. This report points to the complexity of plant defense responses under conditions of heavy metal pollution combined with intensive fertilization in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    PubMed  CAS  Google Scholar 

  2. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum. J Exp Bot 56(409):167–178

    PubMed  CAS  Google Scholar 

  3. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  4. Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35(5):347–354

    CAS  Google Scholar 

  5. Bhandal IS, Kuar H (1992) Heavy metal inhibition of nitrate uptake and in vitro nitrate reductase in roots of wheat (Triticum aestivum L.). Indian J Plant Physiol 35:281–284

    CAS  Google Scholar 

  6. Maier NA, McLaughlin MJ, Heap M, Butt M, Smart MK (2002) Effect of nitrogen source and calcitic lime on soil pH and potato yield, leaf chemical composition, and tuber cadmium concentrations. J Plant Nutr 25(3):523–544

    Article  CAS  Google Scholar 

  7. Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211(4):510–518

    Article  PubMed  CAS  Google Scholar 

  8. Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45(11):1681–1693

    Article  PubMed  CAS  Google Scholar 

  9. Pankovic D, Plesnicar M, Arsenijevic-Maksimovic I, Petrovic N, Sakac Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot (Lond) 86(4):841–847

    Article  CAS  Google Scholar 

  10. Polesskaya OG, Kashirina EI, Alekhina ND (2006) Effect of salt stress on antioxidant system of plants as related to nitrogen nutrition. Russ J Plant Physiol 53(2):186–192

    Article  CAS  Google Scholar 

  11. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  12. Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  PubMed  CAS  Google Scholar 

  13. Hassan MJ, Zhang G, Zhu Z (2008) Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form. J Plant Nutr 31(2):251–262

    Article  CAS  Google Scholar 

  14. Grant CA, Bailey LD (1998) Nitrogen, phosphorus and zinc management effects on grain yield and cadmium concentration in two cultivars of durum wheat. Can J Plant Sci 78(1):63–70

    Article  CAS  Google Scholar 

  15. Lorenz SE, Hamon RE, McGrath SP, Holm PE, Christenson TH (1994) Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur J Soil Sci 45(4):159–165

    Article  CAS  Google Scholar 

  16. Mitchell LG, Grant CA, Racz GJ (2000) Effect of nitrogen application on concentration of cadmium and nutrient ions in soil solution and in durum wheat. Can J Soil Sci 80(1):107–115

    Article  CAS  Google Scholar 

  17. Wangstrand H, Eriksson J, Oborn I (2007) Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur J Agron 26(3):209–214

    Article  CAS  Google Scholar 

  18. Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26(6):821–833

    Article  PubMed  CAS  Google Scholar 

  19. Kovacik J, Klejdus B, Stork F, Hedbavny J (2011) Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants. J Agric Food Chem 59(9):5139–5149

    Article  PubMed  CAS  Google Scholar 

  20. Olson DM, Cortesero AM, Rains GC, Potter T, Lewis WJ (2009) Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol Control 49(3):239–244

    Article  CAS  Google Scholar 

  21. Knobeloch L, Salna B, Hogan A, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108(7):675–678

    Article  PubMed  CAS  Google Scholar 

  22. Watmough SA, Dillon PJ (2003) Base cation and nitrogen budgets for seven forested catchments in central Ontario, 1983–1999. Forest Ecol Manag 177:155–177

    Article  Google Scholar 

  23. Kloppel H, Fliedner A, Kordel W (1997) Behaviour and ecotoxicology of aluminium in soil and water—review of the scientific literature. Chemosphere 35(1–2):353–363

    Article  PubMed  CAS  Google Scholar 

  24. Alloway BJ (1990) Cadmium. In: Alloway BJ (ed) Heavy metals in soils. Blackie & Son, Glasgow, UK, pp 100–339

    Google Scholar 

  25. Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25(2):327–342

    Article  CAS  Google Scholar 

  26. Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88(3):424–438

    CAS  Google Scholar 

  27. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847

    Article  PubMed  CAS  Google Scholar 

  28. Bekesiova B, Hraska S, Libantova J, Moravcikova J, Matusikova I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35(4):579–588

    Article  PubMed  CAS  Google Scholar 

  29. Baker CJ, Mock NM (1994) An improved method for monitoring cell-death in cell-suspension and leaf disc assays using Evans blue. Plant Cell Tiss Org Cult 39(1):7–12

    Article  Google Scholar 

  30. Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  31. Sanchez E, Lopez-Lefebre LR, Garcia PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158(5):593–598

    Article  CAS  Google Scholar 

  32. Kumar GNM, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during ageing and sprouting of potato (Solanum tuberosum L.) seed-tubers. Plant Physiol 102(1):115–124

    PubMed  CAS  Google Scholar 

  33. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806

    Article  PubMed  CAS  Google Scholar 

  34. Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178(2):362–366

    Article  PubMed  CAS  Google Scholar 

  35. Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1,3-glucanase, and protein- patterns after a single separation using polyacrylamide-gel electrophoresis or isolelectrofocusing. Phytopathology 81(9):970–974

    Article  CAS  Google Scholar 

  36. Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57–63

    Google Scholar 

  37. Salaj J, Petrovska B, Obert B, Pret’ova A (2005) Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant Cell Rep 24(10):590–595

    Article  PubMed  CAS  Google Scholar 

  38. Cao WX, Tibbitts TW (1998) Response of potatoes to nitrogen concentrations differ with nitrogen forms. J Plant Nutr 21(4):615–623

    Article  PubMed  CAS  Google Scholar 

  39. Pietila M, Lahdesmaki P, Pakonen T, Laine K, Saari E, Havas P (1990) Effect of the nitrogenous air-pollutants on changes in protein spectra with the onset of winter in the leaves and shoots of the bilberry (Vaccinium myrtillus L.). Environ Pollut 66(2):103–116

    Article  PubMed  CAS  Google Scholar 

  40. Pietila M, Lahdesmaki P, Pietilainen P, Ferm A, Hytonen J, Patila A (1991) High nitrogen deposition causes changes in amino acid concentrations and protein spectra in needles of the scots pine (Pinus sylvestris). Environ Pollut 72(2):103–115

    Article  PubMed  CAS  Google Scholar 

  41. Delpin MW, Goodman AE (2009) Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J 3(9):1064–1069

    Article  PubMed  CAS  Google Scholar 

  42. Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10(6):905–915

    PubMed  CAS  Google Scholar 

  43. Ahmad I, Hellebust JA (1988) The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol 88(2):348–354

    Article  PubMed  CAS  Google Scholar 

  44. Blum A, Ebercon A (1976) Genotypic responses in Sorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Sci 16:428–431

    Article  CAS  Google Scholar 

  45. Badisa VLD, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22(2):144–151

    Article  PubMed  CAS  Google Scholar 

  46. Liu DH, Kottke I (2003) Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. J Biosci 28(4):471–478

    Article  PubMed  CAS  Google Scholar 

  47. Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ Exp Bot 58(1–3):253–260

    Article  CAS  Google Scholar 

  48. Vazquez MD, Poschenrieder C, Barcelo J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120(2):215–226

    Article  CAS  Google Scholar 

  49. Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230(4):755–765

    Article  PubMed  CAS  Google Scholar 

  50. Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44(6):791–796

    CAS  Google Scholar 

  51. Pirselova B, Kuna R, Libantova J, Moravcikova J, Matusikova I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38(5):3437–3446

    Article  PubMed  CAS  Google Scholar 

  52. Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159(3):265–271

    Article  CAS  Google Scholar 

  53. Yang Y-J, Cheng L-M, Liu Z-H (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172(3):632–639

    Article  CAS  Google Scholar 

  54. Skorzynska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Contam Toxicol 50(4):482–487

    Article  PubMed  CAS  Google Scholar 

  55. Corrales I, Poschenrieder C, Barcelo J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165(5):504–513

    Article  PubMed  CAS  Google Scholar 

  56. Wallis C, Eyles A, Chorbadjian RA, Riedl K, Schwartz S, Hansen R, Cipollini D, Herms DA, Bonello P (2011) Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. Forest Pathol 41(1):52–58

    Article  Google Scholar 

  57. Muller HH, Marschner H (1997) Use of an in vitro assay to investigate the antioxidative defence potential of wheat genotypes under drought stress as influenced by nitrogen nutrition. Phyton Ann Rei Bot A 37(3):187–196

    Google Scholar 

  58. Singh B, Kumar V, Antil RS, Ahlawat VS (1992) Cadmium intake by wheat as influenced by nitrogen and FYM application in sandy soil. Crop Res 5:243–248

    Google Scholar 

  59. Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19(1):91–103

    Article  PubMed  CAS  Google Scholar 

  60. Britto DT, Kronzucker HJ (2005) Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant Cell Environ 28(11):1396–1409

    Article  CAS  Google Scholar 

  61. Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20(8):441–448

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Slovak Grant Agency VEGA No. 2/0062/11. We gratefully acknowledge the financial support for the stay of YG at IPGB SAS provided by Slovak Academic Information Agency SAIA, n.o., and for VM provided by the Operational Programme Research and Development for the project: “Implementation of the research of plant genetic resources and its maintaining in the sustainable management of Slovak republic” (ITMS: 26220220097), co-financed from the resources of the European Union Fund for Regional Development. We are grateful to the anonymous reviewers for the comments and suggestions that helped to improve the earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikó Matušíková.

Electronic supplementary material

Below Online Resource 1 Total protein content in soybean root tissue.

Supplementary material 1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konotop, Y., Mészáros, P., Spieß, N. et al. Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Mol Biol Rep 39, 10077–10087 (2012). https://doi.org/10.1007/s11033-012-1881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1881-8

Keywords

Navigation