Skip to main content

Advertisement

Log in

Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The need for recombinant pharmaceutical proteins has urged scientists all over the world to search for better protein expression systems which have higher capabilities and flexibilities. Although a number of protein expression systems are now available, no system is ideal and different systems lack specific properties. Here, microalga Haematococcus is discussed as a new protein expression system which merits cheap growth medium, fast growth rate, ease of manipulation and scale-up, ease of transformation, potential of exploiting in bioreactors and ability to exert post-translational modifications to the proteins. This green single-cell plant has favorable biological and biotechnological features for production of remarkable yields of recombinant proteins with high functionality. In this review article, we highlight the favorable biotechnological characteristics of Haematococcus for lowering costs and facilitating scale-up of recombinant protein production along with its superior biological features for genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201

    Article  CAS  PubMed  Google Scholar 

  2. Kane JF, Hartley DL (1988) Formation of recombinant protein inclusion bodies in Escherichia coli. Trend Biotechnol 6:95–101

    Article  CAS  Google Scholar 

  3. de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26

    Article  PubMed  CAS  Google Scholar 

  4. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  5. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Wang W, Quan C, Fan S (2010) Engineering considerations for process development in mammalian cell cultivation. Curr Pharm Biotechnol 11:103–112

    Article  CAS  PubMed  Google Scholar 

  7. Ikonomou L, Schneider YJ, Agathos SN (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62:1–20

    Article  CAS  PubMed  Google Scholar 

  8. Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  CAS  PubMed  Google Scholar 

  9. Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  10. Miao Y, Ding Y, Sun QY, Xu ZF, Jiang L (2008) Plant bioreactors for pharmaceuticals. Biotechnol Genet Eng Rev 25:363–380

    Article  CAS  PubMed  Google Scholar 

  11. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38:1879–1890

    Article  CAS  PubMed  Google Scholar 

  12. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  CAS  PubMed  Google Scholar 

  13. Barzegari A, Hejazi MA, Hosseinzadeh N, Eslami S, Mehdizadeh AE, Hejazi MS (2010) Dunaliella as an attractive candidate for molecular farming. Mol Biol Rep 37:3427–3430

    Article  CAS  PubMed  Google Scholar 

  14. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138

    Article  CAS  PubMed  Google Scholar 

  15. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  16. Ceron MC, Campos I, Sanchez JF, Acien FG, Molina E, Fernandez-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766

    Article  CAS  PubMed  Google Scholar 

  17. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  18. Mendes A, Reis A, Vasconcelos R, Guerra P, da Silva TL (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214

    Article  Google Scholar 

  19. Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7:159–165

    Article  CAS  PubMed  Google Scholar 

  20. Dreesen IA, Charpin-El HG, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145:273–280

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8:87

    Article  PubMed  CAS  Google Scholar 

  22. Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092

    Article  CAS  PubMed  Google Scholar 

  23. He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chloroplasts. Colloids Surf B 55:26–30

    Article  CAS  Google Scholar 

  24. Dauvillee D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d’Hulst C, Long CA, Ball SG, Tomavo S (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5:e15424

    Article  CAS  PubMed  Google Scholar 

  25. Geng D, Wang Y, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456

    Article  CAS  Google Scholar 

  26. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol (NY) 4:63–73

    Article  CAS  Google Scholar 

  27. Abe J, Hiwatashi Y, Ito M, Hasebe M, Sekimoto H (2008) Expression of exogenous genes under the control of endogenous HSP70 and CAB promoters in the Closterium peracerosum–strigosum–littorale complex. Plant Cell Physiol 49:625–632

    Article  CAS  PubMed  Google Scholar 

  28. Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64

    Article  PubMed  CAS  Google Scholar 

  29. Hirakawa Y, Kofuji R, Ishida K (2008) Transient transformation of a chlorarachniophyte alga, Lotharella amoebiformis (Chlorarachniophyceae), with uidA and egfp reporter genes. J Phycol 44:814–820

    Article  CAS  Google Scholar 

  30. Kakinuma M, Ikeda M, Deal Coury (2009) Isolation and characterization of the rbcS genes from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta) and transient gene expression using the rbcS gene promoter. Fish Sci 75:1015–1028

    Article  CAS  Google Scholar 

  31. Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 6:e28424

    Article  CAS  PubMed  Google Scholar 

  32. Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120

    Article  CAS  PubMed  Google Scholar 

  33. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  34. Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39:575–580

    Article  CAS  Google Scholar 

  35. Devgoswami ChR, Kalita MC, Talukdar J, Bora R, Sharma P (2011) Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. Afr J Biotechnol 10:13128–13138

    CAS  Google Scholar 

  36. Brown TDK (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336

    Article  CAS  PubMed  Google Scholar 

  37. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    CAS  PubMed  Google Scholar 

  38. Lee dY, Fiehn O (2008) High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 4:7

    Article  CAS  Google Scholar 

  39. Montsant A, Zarka A, Boussiba S (2001) Presence of a nonhydrolyzable biopolymer in the cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae). Mar Biotechnol (NY) 3:515–521

    Article  CAS  Google Scholar 

  40. Vega-Estrada J, Montes-Horcasitas MC, Dominguez-Bocanegra AR, Canizares-Villanueva RO (2005) Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol 68:31–35

    Article  CAS  PubMed  Google Scholar 

  41. Fabregas J, Dominguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535

    Article  CAS  PubMed  Google Scholar 

  42. Proctor VW (1975) Some controlling factors in the distribution of Haematococcus pluvialis. Ecology 38:457–462

    Article  Google Scholar 

  43. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54

    Article  CAS  PubMed  Google Scholar 

  44. Xia X (2007) An improved implementation of codon adaptation index. Evol Bioinform Online 3:53–58

    CAS  PubMed  Google Scholar 

  45. Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    Article  PubMed  Google Scholar 

  46. Puigbo P, Bravo IG, Garcia-Vallve S (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics 9:65

    Article  PubMed  CAS  Google Scholar 

  47. Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832

    Article  CAS  PubMed  Google Scholar 

  48. Del RE, Acien FG, Garcia-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815

    Article  CAS  Google Scholar 

  49. Yoo JJ, Choi SP, Kim BW, Sim SJ (2012) Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis. Bioprocess Biosyst Eng 35:309–315

    Article  CAS  PubMed  Google Scholar 

  50. Dong QL, Zhao XM, Xing XY, Gong JX, Hu JZ (2006) Biosynthesis of astaxanthin in Haematococcus pluvialis caused by suppression on nitrogen and carbon metabolisms. Chem Eng 12. doi:CNKI:ISSN:1005-9954.0.2006-12-012

  51. Chen Z, Wang G, Niu J (2012) Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis. Chin J Oceanol Limnol 30:136–145

    Article  CAS  Google Scholar 

  52. Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405

    Article  CAS  Google Scholar 

  53. Fabregas J, Dominquez A, Garcia Alvarez D, Lamela T, Otero A (2012) Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol Lett 20:623–626

    Article  Google Scholar 

  54. Kobayashi M, Kakizono T, Nishio N, Nagai S (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63

    Article  CAS  Google Scholar 

  55. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  56. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  CAS  PubMed  Google Scholar 

  57. Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138

    Article  CAS  Google Scholar 

  58. Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  59. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green algae, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339

    Article  CAS  Google Scholar 

  60. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  PubMed  Google Scholar 

  61. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  62. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  63. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150

    Article  CAS  PubMed  Google Scholar 

  64. Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918

    Article  CAS  PubMed  Google Scholar 

  65. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5:402–412

    Article  CAS  PubMed  Google Scholar 

  66. Rymarquis LA, Higgs DC, Stern DB (2006) Nuclear suppressors define three factors that participate in both 5′ and 3′ end processing of mRNAs in Chlamydomonas chloroplasts. Plant J 46:448–461

    Article  CAS  PubMed  Google Scholar 

  67. Faye L, Daniell H (2006) Novel pathways for glycoprotein import into chloroplasts. Plant Biotechnol J 4:275–279

    Article  CAS  PubMed  Google Scholar 

  68. Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  PubMed  Google Scholar 

  69. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  CAS  PubMed  Google Scholar 

  70. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  71. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332

    CAS  PubMed  Google Scholar 

  72. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  73. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    Article  CAS  PubMed  Google Scholar 

  74. Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14:495–500

    Article  Google Scholar 

  75. Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, volvocales). J Phycol 45:642–649

    Article  CAS  Google Scholar 

  76. Satoh A, Tsuji S, Okada Y, Murakami N, Urami M, Nakagawa K, Ishikura M, Katagiri M, Koga Y, Shirasawa T (2009) Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr 44:280–284

    Article  CAS  PubMed  Google Scholar 

  77. Stewart JS, Lignell A, Pettersson A, Elfving E, Soni MG (2008) Safety assessment of astaxanthin-rich microalgae biomass: acute and subchronic toxicity studies in rats. Food Chem Toxicol 46:3030–3036

    Article  CAS  PubMed  Google Scholar 

  78. Spiller GA, Dewell A (2003) Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: a randomized clinical trial. J Med Food 6:51–56

    Article  CAS  PubMed  Google Scholar 

  79. Stein KE, Webber KO (2001) The regulation of biologic products derived from bioengineered plants. Curr Opin Biotechnol 12:308–311

    Article  CAS  PubMed  Google Scholar 

  80. Kneifel W, Czech E, Kopp B (2002) Microbial contamination of medicinal plants—a review. Plant Med 68:5–15

    Article  CAS  Google Scholar 

  81. Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226

    Article  Google Scholar 

  82. Cecilia Damiani M, Leonardi PI, Pieroni OI, Caseres EJ (2006) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616–623

    Article  Google Scholar 

  83. Olaizola M, Huntley ME (2003) Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman M, Nagabhushanam R (eds) Biomaterials and bioprocessing. Science Publishers, London

    Google Scholar 

  84. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H (1994) Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15:15–19

    Article  CAS  PubMed  Google Scholar 

  86. Chew BP, Park JS, Wong MW, Wong TS (1999) A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 19:1849–1853

    CAS  PubMed  Google Scholar 

  87. Murillo E (1992) [Hypercholesterolemic effect of canthaxanthin and astaxanthin in rats]. Arch Latinoam Nutr 42:409–413

    CAS  PubMed  Google Scholar 

  88. Jyonouchi H, Zhang L, Gross M, Tomita Y (1994) Immunomodulating actions of carotenoids: enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr Cancer 21:47–58

    Article  CAS  PubMed  Google Scholar 

  89. Hughes DA (1999) Effects of dietary antioxidants on the immune function of middle-aged adults. Proc Nutr Soc 58:79–84

    Article  CAS  PubMed  Google Scholar 

  90. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  91. Lockwood SF, Penn MS, Hazen SL, Bikadi Z, Zsila F (2006) The effects of oral Cardax (disodium disuccinate astaxanthin) on multiple independent oxidative stress markers in a mouse peritoneal inflammation model: influence on 5-lipoxygenase in vitro and in vivo. Life Sci 79:162–174

    Article  CAS  PubMed  Google Scholar 

  92. Gross GJ, Lockwood SF (2004) Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (Cardax). Life Sci 75:215–224

    Article  CAS  PubMed  Google Scholar 

  93. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229:873–883

    Article  CAS  PubMed  Google Scholar 

  94. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  95. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412

    Article  CAS  PubMed  Google Scholar 

  96. Muto M, Henry RE, Mayfield SP (2009) Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnol 9:26

    Article  PubMed  CAS  Google Scholar 

  97. Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  CAS  PubMed  Google Scholar 

  98. Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Baranao L, Bravo-Almonacid F (2004) Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed 13:23–35

    Article  CAS  Google Scholar 

  99. Nuttall J, Vine L, Hadlington JL, Drake P, Frigerio L, Ma JKC (2002) ER-resident chaperone interactions with recombinant antibodies in transgenic plants. Eur J Biochem 269:6042–6051

    Article  CAS  PubMed  Google Scholar 

  100. Van der Vyver C, Schneidereit J, Driscoll S, Turner J, Kunert K, Foyer CH (2003) Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Cell Environ 1:101–112

    Google Scholar 

  101. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  102. Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danan A (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA 102:6225–6230

    Article  CAS  PubMed  Google Scholar 

  103. Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1124–1131

    Article  CAS  Google Scholar 

  104. Radhamony RN, Theg SM (2006) Evidence for an ER to Golgi to chloroplast protein transport pathway. Trends Cell Biol 16:385–387

    Article  CAS  PubMed  Google Scholar 

  105. Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitusi T, Munos FJ, Rodriguez-Lopez M, Baroja-Fernandez E, Pozueta-Romero J (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–2592

    Article  CAS  PubMed  Google Scholar 

  106. Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, Nakano A, Mitsui T (2009) The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844–2858

    Article  CAS  PubMed  Google Scholar 

  107. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  108. Andrews B, Adari H, Hannig G, Lahue E, Gosselin M, Martin S, Ahmed A, Ford PJ, Hayman EG, Makrides SC (1996) A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor Vβ5.3 in Escherichia coli. Gene 182:101–109

    Article  CAS  PubMed  Google Scholar 

  109. Brinkmann U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114

    Article  CAS  PubMed  Google Scholar 

  110. Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol 616:46–53

    Article  PubMed  Google Scholar 

  111. Lithwick G, Margalit H (2003) Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res 13:2665–2673

    Article  CAS  PubMed  Google Scholar 

  112. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Barzegari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saei, A.A., Ghanbari, P. & Barzegari, A. Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins. Mol Biol Rep 39, 9931–9939 (2012). https://doi.org/10.1007/s11033-012-1861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1861-z

Keywords

Navigation