Skip to main content
Log in

Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calmodulin (CaM), the predominant Ca2+ receptors, is one of the best-characterized Ca2+ sensors in all eukaryotes. In this study the role of CaM and the possible interrelationship between CaM and hydrogen peroxide (H2O2) in abscisic acid (ABA) induced antioxidant defense were investigated in the seedling of Panax ginseng. Treatment of ABA (100 μM) and H2O2 (10 mM) increased the expression of Panax ginseng calmodulin gene (PgCaM) and significantly enhanced the expression of the antioxidant marker genes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and the activities of chloroplastic and cytosolic antioxidant enzymes. Pretreatments with two CaM antagonists, trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide hydrochloride (W7) and inhibitor or scavenger, diphenyleneiodonium chloride, and dimethylthiourea of reactive oxygen species almost completely suppressed the up-regulation of antioxidant and PgCaM gene. Moreover, H2O2 production and CaM content was almost completely inhibited by pretreatments with two CaM antagonists. In addition, the expressions of PgCaM gene under different biotic stress were analyzed at different time intervals. Thus it may suggests that CaM are involved in ABA-induced increased expression of PgCaM which triggers H2O2 production through activating trans-plasma membrane NADPH oxidase, resulting in up-regulation of defense related antioxidant gene and also plays a pivotal role in defense response against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

GR:

Glutathione reductase

APX:

Ascorbate peroxidase

ROS:

Reactive oxygen species

qRT-PCR:

Quantitative real time reverse transcriptase-polymerase chain reaction

References

  1. Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  2. Defalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signaling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  3. Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  PubMed  CAS  Google Scholar 

  4. Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annual Review Plant Biol 56:435–466

    Article  CAS  Google Scholar 

  5. Chiasson D, Ekengren SK, Martin GB, Dobney SL, Snedden WA (2005) Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv tomato. Plant Mol Biol 58:887–897

    Article  PubMed  CAS  Google Scholar 

  6. Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium–CaM is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays). Plants New Phytol 173:27–38

    Article  CAS  Google Scholar 

  7. Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Article  Google Scholar 

  8. Liao B, Gawienowski MC, Zielinski RE (1996) Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms. Arch Biochem Biophys 327:53–60

    Article  PubMed  CAS  Google Scholar 

  9. Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant NO synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  10. Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci 104:4730–4735

    Article  PubMed  CAS  Google Scholar 

  11. Lee SH, Kim MC, Heo WD, Kim JC, Chung WS, Park CY, Park HC, Cheong YH, Kim CY, Lee KJ, Bahk JD, Lee SY, Cho MJ (1999) Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochem Biophys Acta 1433:56–67

    Article  PubMed  CAS  Google Scholar 

  12. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  13. Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22(2):87–95

    Article  PubMed  CAS  Google Scholar 

  14. Hu X, Jiang M, Zhang A, Lu J (2005) Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57–68

    Article  PubMed  CAS  Google Scholar 

  15. Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  16. Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  Google Scholar 

  17. Desikan RAH, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  18. Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  PubMed  CAS  Google Scholar 

  19. Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomized clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  PubMed  CAS  Google Scholar 

  20. Neha GW, Kim YJ, Kim SH, Sathymoorthy S, Pulla RK, Parvin S, Senthil K, Yang DC (2009) Isolation and characterization of calmodulin gene from Panax ginseng C. A. Meyer. J Ginseng Res 33(1):59–64

    Article  Google Scholar 

  21. Murashige T, Skoog F (1963) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497

    Article  Google Scholar 

  22. Sathiyaraj G, Srinivasan S, Subramanium S, Kim YJ, Kim YJ, Kwon SW, Yang DC (2010) Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep 37(7):3445–3454

    Article  PubMed  CAS  Google Scholar 

  23. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2009) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 46(7):932–939

    Google Scholar 

  24. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  25. Sun DY, Bian YQ, Zhao BH, Zhao LY, Yu XM, Duan SJ (1995) The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiol 36:133–138

    CAS  Google Scholar 

  26. Munne-Bosch S, Alegre L (2003) Drought-induced changes in the redoxstate of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    Article  PubMed  CAS  Google Scholar 

  27. Yang G, Komatsu S (2000) Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol 41:1243–1250

    Article  PubMed  CAS  Google Scholar 

  28. Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  29. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  30. Klapheck S, Zimmer I, Cosse H (1990) Scavenging of hydrogen peroxide in the endosperm of Ricimus communis by ascorbate peroxidase. Plant Cell Physiol 31:1005–1013

    CAS  Google Scholar 

  31. Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26:1557–1577

    Article  PubMed  CAS  Google Scholar 

  32. Hare PD, Cress WA, Van Staden J (1999) Proline synthesis and degradation; a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  33. Liu HT, Li B, Shang ZL, Li XZ et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  PubMed  CAS  Google Scholar 

  34. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon Ju, Huck Lee BC, Yoon HW, Lee SH, Chung WH, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed  CAS  Google Scholar 

  35. Choi HW, Lee DH, Hwang BK (2009) The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant Microbe Interact 22:1389–1400

    Article  PubMed  CAS  Google Scholar 

  36. Cross AR, Jones OTG (1986) The effect of the inhibitor diphenyleneiodonium on the superoxide-generating system of neutrophils. Biochem J 237:111–116

    PubMed  CAS  Google Scholar 

  37. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  38. Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  39. Chen YL, Huang RF, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136:4096–4103

    Article  PubMed  CAS  Google Scholar 

  40. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  41. Murata Y, Pei ZM, Mori IC, Schroeder JI (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    Article  PubMed  CAS  Google Scholar 

  42. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  PubMed  CAS  Google Scholar 

  43. Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  44. Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    Article  CAS  Google Scholar 

  45. Li N, Li C, Chen S, Chang Y, Zhang Y, Wang R, Shi Y, Zheng X, Fritz E, Huttermann A (2009) Abscisic acid, calmodulin response to short term and long term salinity and the relevance to NaCl-induced antioxidant defense in two mangrove species. Open For Sci J 2:48–58

    Google Scholar 

  46. Jiang M, Zhang J (2004) Abscisic acid and antioxidant defense in plant cells. Acta Bot Sin 46:1–9

    CAS  Google Scholar 

  47. Larkindale J, Knght MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  49. Lin SZ, Zhang ZY, Lin YZ, Zhang Q, Guo H (2004) The role of calcium and calmodulin in freezing-induced freezing resistance of Populus tomentosa cuttings. J Plant Physiol Mol Biol 30(1):59–68

    CAS  Google Scholar 

  50. Harper JF, Hong B, Hwang I, Guo HG (1998) A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal auto inhibitory domain. J Biol Chem 273:1099–1106

    Article  PubMed  CAS  Google Scholar 

  51. Lin SZ, Cai SY, Chen XM (2001) Effect of freezing acclimation on calmodulin content and its regulative enzymes activities in banana seedlings. Chin Trop Crops 22(4):29–35

    CAS  Google Scholar 

  52. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. PNAS 99(6):4097–4102

    Article  PubMed  CAS  Google Scholar 

  53. Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol 51:4333–4462

    Google Scholar 

  54. Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schuzle-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defense against mildew in barley. Nature 416:447–451

    Article  PubMed  CAS  Google Scholar 

  55. Xu S (2010) Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves. Acta Biochem Biophys Sin 42:646–655

    Article  CAS  Google Scholar 

  56. Park CY, Heo WD, Yoo JH, Lee JH, Kim MC, Chun HJ, Moon BC, Kim IH, Park HC, Choi MS, Ok HM, Cheong MS, Lee SM, Kim HS, Lee KH, Lim CO, Chung WS, Cho MJ (2004) Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol Cells 18(2):207–213

    PubMed  CAS  Google Scholar 

  57. Ishigaki E, Asamizu T, Arisawa M, Kurosaki F (2004) Cloning and expression of calmodulin genes regulating phytoalexin production in carrot cells. Biol Pharm Bull 27(8):1308–1311

    Article  PubMed  CAS  Google Scholar 

  58. Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci 96:766–771

    Article  PubMed  CAS  Google Scholar 

  59. Lee SK (2004) Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plants. Res Plant Dis 10:248–259

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next-Generation BioGreen 21 Program (SSAC, grant #: PJ008204), Rural Development Administration, Republic of Korea and the Cabbage Genomics assisted breeding supporting Center (CGsC) research programs funded by Ministry for Food, Agriculture, Forestry and Fisheries of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ok Ran Lee or Deok-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvin, S., Lee, O.R., Sathiyaraj, G. et al. Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng . Mol Biol Rep 39, 7327–7338 (2012). https://doi.org/10.1007/s11033-012-1564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1564-5

Keywords

Navigation