Skip to main content
Log in

Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crawford DJ, Landolt E, Les DH, Kimball RT (2006) Speciation in duckweeds (Lemnaceae): phylogenetic and ecological inferences. Aliso 22:231–242

    Google Scholar 

  2. Landolt E (1996) Duckweeds (Lemnaceae): morphological and ecological characteristics and their potential for recycling of nutrients. In: 2nd international conference on ecological engineering for wastewater treatment. Recycling the resource, 5–6, pp 289–296

  3. Les DH, Landolt E, Crawford DJ (1997) Systematics of the Lemnaceae (duckweeds): inferences from micromolecular and morphological data. Plant Syst Evol 204:161–177. doi:10.1007/BF00989203

    Article  Google Scholar 

  4. Wu ZY (2004) Flora Reipublicae Popularis Sinicae, vol 13. Science Press, Beijing, p. 207

  5. Marín CM, Oron G (2007) Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 41:4579–4584. doi:10.1016/j.watres.2007.06.051

    Article  Google Scholar 

  6. Myriam KB, Joaquim AF, Cristina N, Prasad MNV, Helena F (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 91:1–9. doi:10.1016/j.aquatox.2008.09.009

    Article  Google Scholar 

  7. Culley DDJ, Rejmankova E, Kvet J, Feye JB (1981) Production, chemical quality, and use of duckweed (Lemnaceae) in aquaculture, waster management, and animal feeds. J World Maric Soc 12:27–29. doi:10.1111/j.1749-7345.1981.tb00273.x

    Article  CAS  Google Scholar 

  8. Krishna KCB, Polprasert C (2008) An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecol Eng 34:243–250. doi:10.1016/j.ecoleng.2008.08.013

    Article  Google Scholar 

  9. Oron G (1994) Duckweed culture for wastewater renovation and biomass production. Agric Water Manag 26:27–40. doi:10.1016/0378-3774(94)90022-1

    Article  Google Scholar 

  10. Chen Y, Yablonski M, Ernst E, Stomp AM, Cheng JJ (2007) Duckweed: an alternative starch source for bioethanol production. In: ASABE regional annual conference, May 31–June 1

  11. Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean Soil Air Water 37:17–26. doi:10.1002/clen.200800210

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang Y, Yang B, Chen S (2010) Characterization of SSU5C promoter of a rbcS gene from duckweed (Lemna gibba). Mol Biol Rep (Published online: 16 Nov 2010). doi:10.1007/s11033-010-0395-5

  13. Heller J (1996) Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crop. International Plant Genetic Resources Institute, Rome

  14. Han YC, Teng CZ, Chang FH (2007) Analyses of genetic relationships in Nelumbo nucifera using nuclear ribosomal ITS sequence data, ISSR and RAPD markers. Aquat Bot 87:141–146. doi:10.1016/j.aquabot.2007.04.005

    Article  CAS  Google Scholar 

  15. Li WG, Wang BR, Wang JB (2006) Lack of genetic variation of an invasive clonal plant Eichhornia crassipes in China revealed by RAPD and ISSR markers. Aquat Bot 84:176–180. doi:10.1016/j.aquabot.2005.09.008

    Article  CAS  Google Scholar 

  16. Triest L (2008) Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review. Aquat Bot 89:138–154. doi:10.1016/j.aquabot.2007.12.013

    Article  CAS  Google Scholar 

  17. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183. doi:10.1006/geno.1994.1151

    Article  PubMed  CAS  Google Scholar 

  18. Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602. doi:10.1007/s001220050456

    Article  CAS  Google Scholar 

  19. Tsumura Y, Ohba K, Strauss SH (1996) Diversity and inheritance of inter-simple sequence repeat polymorphisms in douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor Appl Genet 92:40–45. doi:10.1007/BF00222949

    Article  CAS  Google Scholar 

  20. Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528. doi:10.1002/elps.1150180906

    Article  PubMed  CAS  Google Scholar 

  21. Chen YY, Zhou RC, Lin XD (2008) ISSR analysis of genetic diversity in sacred lotus cultivars. Aquat Bot 89:311–316. doi:10.1016/j.aquabot.2008.03.006

    Article  CAS  Google Scholar 

  22. Grativol C, Lira CF, Hemerly AS, Ferreira PCG (2010) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep (published online: 27 Nov 2010). doi:10.1007/s11033-010-0547-7

  23. Kumar RS, Parthiban KT, Rao MG (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36:1951–1956. doi:10.1007/s11033-008-9404-3

    Article  Google Scholar 

  24. Esselman EJ, Jianqiang L, Crawford DJ, Winduss JL, Wolfe AD (1999) Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. Mol Ecol 8:443–451. doi:10.1046/j.1365-294X.1999.00585.x

    Article  CAS  Google Scholar 

  25. Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequences repeat markers. Theor Appl Genet 95:408–417. doi:10.1007/s001220050577

    Article  CAS  Google Scholar 

  26. Li JL, Wang GL, Bai ZY (2009) Genetic diversity of freshwater pearl mussel (Hyriopsis cumingii) in populations from the five largest lakes in China revealed by inter-simple sequence repeat (ISSR). Aquac Int 17:323–330. doi:10.1007/s10499-008-9204-8

    Article  Google Scholar 

  27. Martirosyan EV, Ryzhova NN, Kochieva EZ, Skryabin KG (2009) Analysis of chloroplast rpS16 intron sequences in Lemnaceae. Mol Biol 43:32–38. doi:10.1134/S0026893309010051

    Article  CAS  Google Scholar 

  28. Rahimmalek M, Bahreininejad B, Khorrami M, Tabatabaei BE (2009) Genetic variability and geographic differentiation in Thymus daenensis subsp. daenensis, an endangered medicinal plant, as revealed by inter simple sequence repeat (ISSR) markers. Biochem Genet 47:831–842. doi:10.1007/s10528-009-9281-z

    Article  PubMed  CAS  Google Scholar 

  29. Shahsavar AR, Izadpanah K, Tafazoli E, Tabatabaei BE (2007) Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat (ISSR) markers. Sci Hortic 112:310–314. doi:10.1016/j.scienta.2006.12.039

    Article  CAS  Google Scholar 

  30. Wang Xl, Zhao FJ, Hu ZM, Critchley AT, Morrell SL, Duan D (2008) Inter-simple sequence repeat (ISSR) analysis of genetic variation of Chondrus crispus populations from North Atlantic. Aquat Bot 88:154–159. doi:10.1016/j.aquabot.2007.10.001

    Article  CAS  Google Scholar 

  31. Nei M (1972) Genetic distance between populations. Am Nat 106:282–283. doi:10.1086/282771

    Article  Google Scholar 

  32. Bergmann BA, Cheng J, Classen J, Stomp AM (2000) In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour Technol 73:13–20. doi:10.1016/S0960-8524(99)00137-6

    Article  CAS  Google Scholar 

  33. Costa JC, Neto C, Arse′nio P, Capelo J (2009) Geographic variation among Iberian communities of the exotic halophyte Cotula coronopifolia. Bot Helv 119:53–61. doi:10.1007/s00035-009-0056-2

    Article  Google Scholar 

  34. Dohzono I, Suzuki K (2010) Morphological and genetic differentiation in Isodon umbrosus by altitudinal variation in bumblebee pollinator assemblages. Plant Species Biol 25:20–29. doi:10.1111/j.1442-1984.2010.00268.x

    Article  Google Scholar 

  35. Escudero M, Valcárce V, Vargas P, Luceño M (2009) Significance of ecological vicariance and long-distance dispersal in the diversification of Carex sect Spirostachyae (Cyperaceae). Am J Bot 96:2100–2114. doi:10.3732/ajb.0900134

    Article  PubMed  Google Scholar 

  36. Khalifa MB, Simon V, Marrakchi M, Fakhfakh H, Moury B (2009) Contribution of host plant resistance and geographic distance to the structure of Potato virus Y (PVY) populations in pepper in northern Tunisia. Plant Pathol 58:763–772. doi:10.1111/j.1365-3059.2009.02064.x

    Article  Google Scholar 

  37. Cross JW (2006) Charms of Duckweed: an introduction to the smallest flowering plants. http://www.mobot.org/jwcross/duckweed/duckweed.htm. Accessed 17 Aug 2006

Download references

Acknowledgments

This research was supported by a grant from the National Key Technology R&D Program during the Twelfth Five-year Plan Period of China (2011BAD22B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, H., Xiao, Y., Jin, Y. et al. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers. Mol Biol Rep 39, 547–554 (2012). https://doi.org/10.1007/s11033-011-0769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0769-3

Keywords

Navigation