Skip to main content
Log in

Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Dof (DNA binding with One Finger) family represents a classic zinc-finger transcription factors involved with multifarious roles exclusively in plants. There exists great diversity in terms of number of Dof genes observed in different crops. In current study, a total of 28 putative Dof genes have been predicted in silico from the recently available whole genome shotgun sequence of Sorghum bicolor (L.) Moench (with assigned accession numbers TPA:BK006983–BK007006 and TPA:BK007079–BK007082). The predicted SbDof genes are distributed on nine out of ten chromosomes of sorghum and most of these genes lack introns based on canonical intron/exon structure. Phylogenetic analysis of 28 SbDof proteins resulted in four subgroups constituting six clusters. The comparative phylogenetic analysis of these Dof proteins along with 30 rice and 36 Arabidopsis Dof proteins revealed six major groups similar to what has been observed earlier for rice and Arabidopsis. Motif analysis revealed the presence of conserved 50–52 amino acids Dof domain uniformly distributed across all the 28 Dof proteins of sorghum. The in silico cis-regulatory elements analysis of these SbDof genes suggested its diverse functions associated with light responsiveness, endosperm specific gene expression, hormone responsiveness, meristem specific expression and stress responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45(4):386–391

    Article  PubMed  CAS  Google Scholar 

  2. Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54(6):582–596

    Article  PubMed  CAS  Google Scholar 

  3. Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem 262(2):247–257

    Article  PubMed  CAS  Google Scholar 

  4. Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3(5):423–434

    Article  PubMed  CAS  Google Scholar 

  5. Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7(12):555–560

    Article  PubMed  CAS  Google Scholar 

  6. Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    Article  PubMed  Google Scholar 

  7. Kushwaha H, Yadav D (2010) Biochemical, molecular and in silico characterization of DNA-binding with one finger (DOF) transcription factor and investigating its diverse function in plants. In: Rao V (ed) Current topics on bioprocesses in food industry, vol III. Asiatech, New Delhi, pp 150–168

    Google Scholar 

  8. Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17(2):209–214

    Article  PubMed  CAS  Google Scholar 

  9. Umemura Y, Ishiduka T, Yamamoto R, Esaka M (2004) The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. Plant J 37(5):741–749

    Article  PubMed  CAS  Google Scholar 

  10. Yanagisawa S (1997) Dof DNA binding domains of plant transcription factors contribute to multiple protein–protein interactions. Eur J Biochem 250(2):403–410

    Article  PubMed  CAS  Google Scholar 

  11. Krohn NM, Yanagisawa S, Grasser KD (2002) Specificity of the stimulatory interaction between chromosomal HMBG proteins and the transcription factor Dof2 and its negative regulation by protein kinase CK2 mediated phosphorylation. J Biol Chem 277(36):32438–32444

    Article  PubMed  CAS  Google Scholar 

  12. Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P (2007) The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Gen Genomics 277(4):379–390

    Article  CAS  Google Scholar 

  13. Shaw LM, McIntyre CL, Gresshoff PM, Xue GP (2009) Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 9(4):485–498

    Article  PubMed  CAS  Google Scholar 

  14. Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001

    Article  PubMed  CAS  Google Scholar 

  15. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    Article  PubMed  CAS  Google Scholar 

  16. Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13(2):67–73

    Article  PubMed  CAS  Google Scholar 

  17. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  PubMed  CAS  Google Scholar 

  18. Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Article  PubMed  CAS  Google Scholar 

  19. Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134(4):1718–1732

    Article  PubMed  CAS  Google Scholar 

  20. Papi M, Sabatini S, Bouchez D, Camilleri C, Constantino P, Vittorioso P (2000) Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev 14(1):28–33

    PubMed  CAS  Google Scholar 

  21. Papi M, Sabatini S, Altamura MM, Hennig L, Schafer E, Costantino P, Vittorioso (2002) Inactivation of the phloem-specific Dof zinc finger gene DAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol 128(2):411–417

    Article  PubMed  CAS  Google Scholar 

  22. Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2002) Mutation in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell 14(6):1253–1263

    Article  PubMed  CAS  Google Scholar 

  23. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309(5732):293–297

    Article  PubMed  CAS  Google Scholar 

  24. Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11(11):550–558

    Article  PubMed  CAS  Google Scholar 

  25. Park DH, Lim PO, Kim JS, Cho DS, Hong SH, Nam HG (2003) The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J 34(2):161–171

    Article  PubMed  CAS  Google Scholar 

  26. Ward JM, Cufr CA, Denzel MA, Neff MM (2005) The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell 17(2):475–485

    Article  PubMed  CAS  Google Scholar 

  27. Skirycz A, Radziejwoski A, Busch W, Hannah MA, Czeszejko J, Kwaśniewski M, Zanor MI, Lohmann JU, De Veylder L, Witt I, Mueller-Roeber B (2008) The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J 56(5):779–792

    Article  PubMed  CAS  Google Scholar 

  28. Washio K (2001) Identification of DOF proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochim Biophys Acta 1520(1):54–62

    PubMed  CAS  Google Scholar 

  29. Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein–protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol 133(2):850–863

    Article  PubMed  CAS  Google Scholar 

  30. Yangisawa S (2000) Dof1 & Dof2 protein are associated with expression of multiple gene involved in carbon metabolism in maize. Plant J 21(3):281–288

    Article  Google Scholar 

  31. Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101(20):7833–7838

    Article  PubMed  CAS  Google Scholar 

  32. Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue specific and light regulated gene expression. Plant Cell 10(1):75–89

    Article  PubMed  CAS  Google Scholar 

  33. Chen R, Ni Z, Qin Y, Nie X, Lin Z, Dong G, Sun Q (2005) Isolation and characterization of TaDof1 transcription factor in wheat (Triticum aestivum L.). DNA Seq 16(5):358–363

    Article  PubMed  CAS  Google Scholar 

  34. Vicente-Carbajosa J, Moose SP, Parsons R, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94(14):7685–7690

    Article  PubMed  CAS  Google Scholar 

  35. Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16(1):53–62

    Article  PubMed  CAS  Google Scholar 

  36. Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellins responsive genes in barley aleurone. Plant Physiol 130(1):111–119

    Article  PubMed  CAS  Google Scholar 

  37. Dong G, Ni Z, Yao Y, Nie X, Sun Q (2007) Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol Biol 63(1):73–84

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF DOF and RISBZ1 bZIP activators in regulation of rice seed expression genes. Plant Physiol 141(4):1694–1707

    Article  PubMed  CAS  Google Scholar 

  39. Kushwaha H, Gupta N, Singh VK, Kumar A, Yadav D (2008) In silico analysis of PCR amplified DOF (DNA binding with one finger) transcription factor domain and cloned genes from cereals and millets. Online J Bioinform 9(2):130–143

    Google Scholar 

  40. De Paolis A, Sabatini S, De Pascalis L, Costantino P, Capone I (1996) A rolB regulatory factor belongs to a new class of a single zinc finger plant proteins. Plant J 10(2):215–223

    Article  PubMed  Google Scholar 

  41. Kisu Y, Ono T, Shimofurutani N, Suzuki M, Esaka M (1998) Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol 39(10):1054–1064

    PubMed  CAS  Google Scholar 

  42. Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11(3):323–333

    Article  PubMed  CAS  Google Scholar 

  43. Kang HG, Singh KB (2000) Characterization of salicylic acid responsive, Arabidopsis Dof domain proteins: over expression of OBP3 leads to growth defects. Plant J 21(4):329–339

    Article  PubMed  CAS  Google Scholar 

  44. Zhang B, Chen W, Foley RC, Büttner M, Singh KB (1995) Interaction between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell 7(12):2241–2252

    Article  PubMed  CAS  Google Scholar 

  45. Chen W, Chao G, Singh K (1996) The promoter of an H2O2 inducible Arabidopsis glutathione S-transferase gene contains closely linked OSF & OBP1 binding sites. Plant J 10(6):955–966

    Article  PubMed  CAS  Google Scholar 

  46. Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47(1):10–24

    Article  PubMed  CAS  Google Scholar 

  47. Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell specific gene expression. Plant J 28(4):455–464

    Article  PubMed  CAS  Google Scholar 

  48. Varshney RK, Hoisington AD, Tyagi KA (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24(11):490–499

    Article  PubMed  CAS  Google Scholar 

  49. Kellogg EA, Birchler JA (1993) Linking phylogeny and genetics: Zea mays as a tool for phylogenetic studies. Syst Biol 42:415–439

    Article  Google Scholar 

  50. Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95(5):2005–2010

    Article  PubMed  CAS  Google Scholar 

  51. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12(5):637–646

    Article  PubMed  CAS  Google Scholar 

  52. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908

    Article  PubMed  CAS  Google Scholar 

  53. Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15(12):1643–1650

    Article  PubMed  CAS  Google Scholar 

  54. Caetano-Anolles (2005) Evolution of genome size in the grasses. Crop Sci 45:1809–1816

    Article  CAS  Google Scholar 

  55. Grenier C, Bramel-Cox PJ, Hamon P (2001) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Article  Google Scholar 

  56. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  PubMed  CAS  Google Scholar 

  57. Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J (2006) DRTF: a database of rice transcription factors. Bioinformatics 22(10):1286–1287

    Article  PubMed  CAS  Google Scholar 

  58. Guo A, He K, Liu D, Bai S, Gu S, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569

    Article  PubMed  CAS  Google Scholar 

  59. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  60. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  61. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated nonredundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  CAS  Google Scholar 

  62. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(1):S10.1–S10.12

    Article  Google Scholar 

  63. Stormo GD (2000) Gene-finding approaches for eukaryotes. Genome Res 10(4):394–397

    Article  PubMed  CAS  Google Scholar 

  64. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  PubMed  CAS  Google Scholar 

  65. de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365

    Article  PubMed  Google Scholar 

  66. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  67. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30(1):235–238

    Article  PubMed  CAS  Google Scholar 

  68. Brameier M, Krings A, Maccallum RM (2007) NucPred—predicting nuclear localization of proteins. Bioinformatics 23(9):1159–1160

    Article  PubMed  CAS  Google Scholar 

  69. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  70. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  71. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14(1):48–54

    Article  PubMed  CAS  Google Scholar 

  72. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  PubMed  CAS  Google Scholar 

  73. Lescot M, Hais PD, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  74. Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17(1):75–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Head, Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur for providing the infrastructural facilities. The facilities provided by DBT-funded SUB-DIC, Bioinformatics Centre, School of Biotechnology, BHU, Varanasi is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushwaha, H., Gupta, S., Singh, V.K. et al. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep 38, 5037–5053 (2011). https://doi.org/10.1007/s11033-010-0650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0650-9

Keywords

Navigation