Skip to main content

Advertisement

Log in

Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng C. A. Meyer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The regulation of reactive oxygen scavengers against biotic and abiotic conditions were investigated in the seedling of Panax ginseng C. A. Meyer. From the EST library we selected the antioxidant marker genes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione synthase (GS). The abiotic chilling, heat, osmotic, oxidative, and wounding stresses and biotic stresses with fungal pathogens were tested against 3-week-grown seedlings. The expression patterns of the genes were analyzed by means of real-time quantitative RT-PCR. The transcriptome result under abiotic stresses showed differential expression and elevated up-regulation of PgSOD, PgGPX, PgGS, and PgAPX, thus it may prove the generation of ROS in ginseng. Whereas, in biotic stress the up-regulation of transcript level merely based on the incompatible interactions. But PgAPX and PgCAT showed no significant change or slight down-regulation of transcript level during pathogen interaction. Thus it may suggest that in ginseng, plant-pathogen interaction triggers defense-related gene transcription via salicylic acid mediated signaling mechanism, and also possess crosstalk signaling networks between abiotic and biotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

GPX:

Glutathione peroxide

APX:

Ascorbate peroxide

CAT:

Catalase

GS:

Glutathione synthase

qRT–PCR:

Quantitative real-time polymerase chain reaction

HAT:

Hours after treatment

PCD:

Programmed cell death

References

  1. Halliwell B, Gutteridge JMC (2006) Free radicals in biology and medicine, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  2. Foote CS, Wexler S (1964) Olefin oxidations with excited singlet molecular oxygen. J Am Chem Soc 86:3879–3880

    Article  CAS  Google Scholar 

  3. Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects and cryoprotective mechanisms. J Photochem Photobiol 63:103–113

    Article  CAS  Google Scholar 

  4. Elstner EF (1991) Oxygen radicals—biochemical basis for their efficacy. Klin Wochenschr 69:949–956

    Article  PubMed  CAS  Google Scholar 

  5. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  6. Grene R (2002) Oxidative stress and acclimation mechanisms in plants. In: Somerville CR, Myerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–19. Available at http://www.aspb.org/publications/Arabidopsis/

  7. Agrawal GK, Rakwal R, Jwa NS, Agrawal VP (2002) Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227–236

    Article  PubMed  CAS  Google Scholar 

  8. Hernández JA, Jiménez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  9. Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  PubMed  CAS  Google Scholar 

  10. Alissa EM, Bahijri SM, Lamb DJ, Ferns GA (2004) The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol 85:265–275

    Article  PubMed  CAS  Google Scholar 

  11. Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomized clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  PubMed  CAS  Google Scholar 

  12. Park JD, Rhee DK, Lee YH (2005) Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 4:159–175

    Article  CAS  Google Scholar 

  13. Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C. A. Meyer. Acta Pharmacol Sin 29:1109–1118

    Article  PubMed  CAS  Google Scholar 

  14. Lee SK (2004) Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plants. Res Plant Dis 10:248–259

    CAS  Google Scholar 

  15. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inz′e D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  17. Kim JH, Kim SG, Kim MS, Jeon YH, Cho DH, Kim YH (2009) Different structural modifications associated with development of ginseng root rot caused by Cylindrocarpon destructans. Plant Pathol J 25:1–5

    Article  Google Scholar 

  18. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2009) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 46(7):932–939

    Google Scholar 

  19. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:20–25

    Article  Google Scholar 

  20. Parvin S, Pulla RK, Kim YJ, Sathiyaraj G, Jung SK, Khorolragchaa A, In JG, Yang DC (2009) Isolation and characterization of glycolate oxidase gene from Panax ginseng C. A. Meyer. J Ginseng Res 33(4):249–255

    Article  CAS  Google Scholar 

  21. Sathiyaraj G, Srinivasan S, Subramanium S, Kim YJ, Kim YJ, Kwon SW, Yang DC (2010) Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep 37(7):3445–3454

    Article  PubMed  CAS  Google Scholar 

  22. Lee JH, Kim YJ, Jeong DY, Sathiyaraj G, Pulla RK, Shim JS, In JG, Yang DC (2010) Isolation and characterization of a glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer. Mol Biol Rep 37(7):3455–3463

    Article  PubMed  CAS  Google Scholar 

  23. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  24. Radić S, Radić-Stojković M, Pevalek-Kozlina B (2006) Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J Plant Physiol 163(12):1284–1292

    Article  PubMed  Google Scholar 

  25. Trivedi AH, Dave BJ, Adhvaryu SG (1990) Assesment of genotoxicity of nicotine employing in vitro mammalian test systems. Cancer Lett 54:89–94

    Article  PubMed  CAS  Google Scholar 

  26. Prasad TK, Anderson MD, Stewart CR (1994) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  27. Lin JN, Kao CH (1994) Effect of oxidative stress caused by hydrogen peroxide on senescence of rice. Bot Bull Acad Sin 39:161–165

    Google Scholar 

  28. Patra J, Brahma B, Panda A (1998) Comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environ Pollut 101:99–105

    Article  PubMed  CAS  Google Scholar 

  29. Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  30. Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:472–479

    Article  Google Scholar 

  31. Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  32. Tsang EWT, Bowler C, Herouart D, Van Camp W, Villarrod R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  PubMed  CAS  Google Scholar 

  33. Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3(2):61–66

    Article  Google Scholar 

  34. Zubini P, Bertolini P, Baraldi E (2005) Variation of antioxidant enzyme gene expression during cold storage of aubergine. Acta Hort (ISHS) 682:1287–1292

    CAS  Google Scholar 

  35. Huh GH, Lee SJ, Bae YS, Liu JR, Kwak SS (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension cultured cells of sweet potato and their differential expression in response to stress. Mol Gen Genet 255:382–391

    Article  PubMed  CAS  Google Scholar 

  36. Kim KY, Huh GH, Lee HS, Kwon SY, Hur Y, Kwak SS (1999) Molecular characterization of two anionic peroxidase cDNAs isolated from suspension cultures of sweet potato. Mol Gen Genet 261:941–947

    Article  PubMed  CAS  Google Scholar 

  37. Saruyama H, Tanida M (1995) Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci 109:105–113

    Article  CAS  Google Scholar 

  38. Chen G, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  39. Elia MR, Borraccino G, Dipierro S (1992) Soluble ascorbate peroxidase from potato tubers. Plant Sci 85:17–21

    Article  CAS  Google Scholar 

  40. Queiroz CGS, Alonso A, Mares-Guia M, Magalhães AC (1998) Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea Arabica L. roots. Biol Plant 41(3):403–413

    Article  CAS  Google Scholar 

  41. Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33

    Article  CAS  Google Scholar 

  42. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101(1):7–12

    PubMed  CAS  Google Scholar 

  43. Kang HM, Saltveit ME (2002) Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles. J Agric Food Chem 50(3):513–518

    Article  PubMed  CAS  Google Scholar 

  44. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts upon the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressor of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  45. Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbe attack. Cell 56:215–233

    Article  PubMed  CAS  Google Scholar 

  46. Baker MA, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  PubMed  CAS  Google Scholar 

  47. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  PubMed  CAS  Google Scholar 

  48. Chen HS, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  49. Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  PubMed  CAS  Google Scholar 

  50. Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10(6):555–569

    Article  PubMed  CAS  Google Scholar 

  51. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  52. Clark SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114(2):157–164

    Article  Google Scholar 

  53. Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    Article  PubMed  CAS  Google Scholar 

  54. Mittler R, Shulaev V, Lam E, Cohen M (1999) Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco. Plant Mol Biol 39:1025–1035

    Article  PubMed  CAS  Google Scholar 

  55. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049

    PubMed  CAS  Google Scholar 

  56. Ochsenbein C, Przybyla D, Danon A (2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J 47(3):445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant from the KGCMVP for Technology Development Program of Agriculture and Forestry, Ministry of Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathiyaraj, G., Lee, O.R., Parvin, S. et al. Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng C. A. Meyer. Mol Biol Rep 38, 2761–2769 (2011). https://doi.org/10.1007/s11033-010-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0421-7

Keywords

Navigation