Skip to main content
Log in

Dissecting the genetic architecture of important traits that enhance wild germplasm resource usage in modern maize breeding

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Domestication and improvement of maize (Zea mays L.) from ~ 10,000 years ago has produced remarkable alterations from its wild ancestor, teosinte. To investigate the genetic basis of changes in plant and inflorescence traits, we developed a teosinte–maize intermated population. More than 200 common quantitative trait loci (QTLs) and 44 QTL clusters were identified underlying 13 vegetative and reproductive traits. Among them, few common QTLs with major effects were observed, which supported previous hypotheses that a small number of major loci can explain a large portion of phenotypic changes during domestication. Additionally, we found many moderate or minor QTLs that might have critical roles in shaping plant architecture and enhancing grain yield of modern maize. Although maize has better performance for the traits studied here, teosinte still harbored desirable alleles in some of the common QTLs. Furthermore, we integrated multiple datasets and predicted candidate genes underlying these QTLs. This study elucidates the genetic basis of these vegetative and reproductive traits in maize and teosinte, and suggests the possibility of improving maize by teosinte re-domestication using a small number of loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247

    Google Scholar 

  • Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O'Connor D, Grotewold E, Hake S (2012) Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 26:1685–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs WH, McMullen MD, Gaut BS, Doebley JF (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics 177:1915–1928

    PubMed  PubMed Central  Google Scholar 

  • Calderón CI, Yandell BS, Doebley JF (2016) Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS One 11:e0150276

    PubMed  PubMed Central  Google Scholar 

  • Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM (2014) Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 15:414

    PubMed  PubMed Central  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson RM, Hansey CN, Gowda M et al (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203

    CAS  Google Scholar 

  • Doebley JF (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  PubMed  Google Scholar 

  • Du Y, Liu L, Li M, Fang S, Shen X, Chu J, Zhang Z (2017) UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol 214:721–733

    CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Google Scholar 

  • Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C, Lewis MW, Kumari S, Hiraga S, Yang F, Unger-Wallace E, Olson A, Hake S, Vollbrecht E, Grotewold E, Ware D, Jackson D (2014) Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Yan JB (2019) De novo domestication: an alternative route toward new crops for the future. Mol Plant 12:615–631

    CAS  PubMed  Google Scholar 

  • Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, Li D, Xu D, Tian J, Wu W, Lu S, Li C, Tian F (2019) QTL mapping for leaf morphology traits in a large maize-teosinte population. Mol Breed 39:103

    CAS  Google Scholar 

  • Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gao Y, Jia H, Liu L, Zhang D, Zhang Z (2015) Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement. BMC Genomics 16:363

    PubMed  PubMed Central  Google Scholar 

  • Huang J, Gao Y, Jia H, Zhang Z (2016) Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Mol Ecol Resour 16:1465–1477

    CAS  PubMed  Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen M, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    CAS  PubMed  Google Scholar 

  • Kermicle JL, Allen JP (1990) Cross-incompatibility between maize and teosinte. Maydica 35:399–408

    Google Scholar 

  • Lemmon ZH, Doebley JF (2014) Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL. Genetics 198:345–353

    PubMed  PubMed Central  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge

  • Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670

    PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori G (2013) Flooding tolerance in interspecific introgression lines containing chromosomesegments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112:1125–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LS, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler ES, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:8060–8064

    Google Scholar 

  • McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    CAS  PubMed  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quijada P, Shannon LM, Glaubitz JC, Studer AJ, Doebley J (2009) Characterization of a major maize domestication QTL on the short arm of chromosome 1. Maydica 54:401–408

    Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon LM (2012) The genetic architecture of maize domestication and range expansion. Ph.D. Dissertation, University of Wisconsin, Madison, WI

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wang H, Studer AJ, Zhao Q, Meeley R, Doebley J (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200:965–974

    PubMed  PubMed Central  Google Scholar 

  • Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber AL, Briggs WH, Rucker J, Baltazar BM, de Jesús Sánchez-Gonzalez J, Feng P, Buckler ES, Doebley JF (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180:1221–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber AL, Zhao Q, McMullen MD, Doebley JF (2009) Using association mapping in teosinte to investigate the function of maize selection-candidate genes. PLoS One 4:e8227

    PubMed  PubMed Central  Google Scholar 

  • Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley JF, Brutnell TP, Jackson DP (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci U S A 108:E506–E512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wills DM, Whipple CJ, Takuno S, Kursel EL, Shannon LM, Ross-Ibarra J, Doebley JF (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9:e1003604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wills DM, Fang Z, York AM, Holland JB, Doebley JF (2018) Defining the role of the MADS-box gene, Zea agamous like1, a target of selection during maize domestication. J Hered 109:333–338

    CAS  PubMed  Google Scholar 

  • Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107:10578–10583

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Fang Xu (Cold Spring Harbor Laboratory) for critically reviewing the manuscript. We thank Mallory Eckstut, Ph.D., from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This research was funded by the National Key Research and Development Plan of China (2016YFD0100303), National Science and Technology Support Program (2015BAD02B01), and National Natural Science Foundation of China (31701431).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and FQ designed the experiments. LL, JH, LH, NL, RH, WD, and YD performed most of the experiments and analyzed the data. LL and ZZ wrote the manuscript.

Corresponding author

Correspondence to Zuxin Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Huang, J., He, L. et al. Dissecting the genetic architecture of important traits that enhance wild germplasm resource usage in modern maize breeding. Mol Breeding 39, 157 (2019). https://doi.org/10.1007/s11032-019-1061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1061-9

Keywords

Navigation