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Abstract Genomic selection is a promising molec-

ular breeding strategy enhancing genetic gain per unit

time. The objectives of our study were to (1) explore

the prediction accuracy of genomic selection for plant

height and yield per plant in soybean [Glycine max

(L.) Merr.], (2) discuss the relationship between

prediction accuracy and numbers of markers, and (3)

evaluate the effect of marker preselection based on

different methods on the prediction accuracy. Our

study is based on a population of 235 soybean varieties

which were evaluated for plant height and yield per

plant at multiple locations and genotyped by 5361

single nucleotide polymorphism markers. We applied

ridge regression best linear unbiased prediction cou-

pled with fivefold cross-validations and evaluated

three strategies of marker preselection. For plant
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height, marker density and marker preselection pro-

cedure impacted prediction accuracy only marginally.

In contrast, for grain yield, prediction accuracy based

on markers selected with a haplotype block analyses-

based approach increased by approximately 4 %

compared with random or equidistant marker sam-

pling. Thus, applying marker preselection based on

haplotype blocks is an interesting option for a cost-

efficient implementation of genomic selection for

grain yield in soybean breeding.

Keywords Genomic selection � Prediction
accuracy � Glycine max � Sampling method

Abbreviations

GS Genomic selection

SNP Single nucleotide polymorphism

rrBLUP Ridge regression best linear unbiased

prediction

RSM Random sampling method

HBA Haplotype block analysis

ESM Evenly sampling method

Introduction

Soybean [Glycine max (L.) Merr.] is one of the most

important sources of oil and plant protein (Masuda and

Goldsmith 2009). Substantial genetic improvements

are required for both traits to feed an estimated world

population of 9 billion by 2050 (Ray et al. 2013).

Genomic selection (GS) is a novel breeding tool

accelerating the selection gain per time unit. GS was

initially used for animal breeding (Meuwissen et al.

2001), and its potential is currently intensively studied

in plant populations (Heffner et al. 2009; Jannink et al.

2010; Nakaya and Isobe 2012). These experimental

studies included data of many major crops such as

barley (Zhong et al. 2009), wheat (Rutkoski et al. 2011;

Zhao et al. 2015; Pérez-Rodrı́guez et al. 2012; Crossa

et al. 2014), maize (Zhao et al. 2012a, b; Bernardo

2013, 2014), rice (Spindel et al. 2015), sunflower (Reif

et al. 2013), forage plants (Hayes et al. 2013), sugar

beet (Wurschum et al. 2013), and soybean (Bao et al.

2014; Shu et al. 2013). All studies underline the

potential of genomic selection as a powerful tool to

accelerate selection gain in plant breeding.

Information on the level of prediction accuracy of

genomic selection is crucial to integrate this new tool

into applied plant breeding programs. GS prediction

accuracy is affected by many factors (Zhong et al.

2009; Calus et al. 2008; Solberg et al. 2008; Zhao et al.

2012a, b; Habier et al. 2007). Thereby, the number of

markers is one factor to successfully integrate GS in

applied plant breeding programs. A high number of

markers facilitate to capture most of the linkage
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information between QTL and SNP (Solberg et al.

2008; Meuwissen et al. 2001). Nevertheless, large

number of markers increases costs and more impor-

tantly can create problems due to collinearity among

markers. Moreover, as GS also exploits relatedness

(Habier et al. 2007, 2010), it is pivotal to have a

balanced set ofmarkers allowing to portray reliably the

relationshipmatrix (Liu et al. 2015;Habier et al. 2010).

Soybean is suitable for genomic selection because

of moderated genome size and rapid progress on

soybean genome sequencing (Schmutz et al. 2010) and

re-sequencing (Lam et al. 2010; Li et al. 2013).

Moreover, SNP markers have been developed which

are distributed throughout the soybean genome (Song

et al. 2013) accelerating the application of GS. Shu

et al. (2013) used 288 soybean varieties and 79

sequence-characterized amplified region (SCAR)

markers and illustrated the potential of whole-genome

prediction of hundred-seed weight. Bao et al. (2014)

used 282 elite soybean lines, which were fingerprinted

with 1536 single nucleotide polymorphism (SNP)

markers, and highlighted the prospective of genomic

selection for improving resistance to soybean cyst

nematode (SCN). All previous research showed that

genomic selection was an effective procedure in

soybean breeding. However, results on genomic

selection in soybean on complex traits such as yield

are to the best of our knowledge still missing.

The objectives of this study were to apply ridge

regression best linear unbiased prediction in a popu-

lation of 235 soybean varieties fingerprinted with 5361

genome-wide distributed SNPs in order to (1) explore

the genomic prediction accuracy for plant height and

yield per plant, (2) discuss the relationship between

prediction accuracy and numbers of markers, and (3)

evaluate the effect of marker preselection based on

different methods on the prediction accuracy.

Materials and methods

Field trials

Our study comprised phenotypic data of 235 soybean

varieties provided by the National Key Facility for

Crop Gene Resources and Genetic Improvement

(NFCIR), Institute of Crop Science, Chinese Academy

of Agricultural Science. Out of the 235 varieties, 185

were North Spring soybean (NSs) and 50 HuangHuai

summer soybean (HHSs) lines. The 235 varieties were

evaluated in replicated field trials in 23 locations in

Northeast China and in the HuangHuai region in the

year 2011 (Supplementary Table S1). The experimen-

tal designs were randomized complete block designs

with two replications. Plots consisted of three rows

with 3 m in length and 0.2 m apart. Fertility and pest

management were performed following standard man-

agement recommendations. Plant height (cm) and

yield per plant (g) were determined in each location

following standard protocols (Qiu et al. 2006).

Phenotypic data analyses

Variance components and heritability of plant height

and yield per plant were estimated using the lme4

package implemented in the software package R

(Bates et al. 2014). The following mixed linear model

was fitted:

yij ¼ lþ Li þ Gj þ eij;

where yij is the average phenotypic value for ith line at

jth location, l is the population mean, Li and Gj refer to

the effect of jth location and ith line, respectively, and eij
denotes the randomresidual term.Variance components

were estimated assuming random location and genotype

effects. The best linear unbiased estimation (BLUE) of

each line was determined using the same model

mentioned above by assuming fixed genotypic effect

and random location effects. The difference of target

traits average between NSs subsets and HHSs subsets

was evaluated applying a t test using PASW statistics.

Genotypic data and linkage disequilibrium

analysis

The 235 soybean lines were genotyped with Illumina

SoySNP 6 k iSelect BeadChip which comprised 5361

SNPs. These SNPs were chosen from the Illumina

SoySNP 50 k iSelect BeadChip (Illumina, San Diego,

USA) (Song et al. 2013). We selected SNPs that were

located in the proximity of previously described QTLs

for various traits. Genotypes are called using the

program GenomeStudio (Illumina, San Diego, USA).

SNPs with proportion of missing data exceeding 10 %

were excluded. For the remaining SNPs, missing
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values were imputed (Poland et al. 2012). Minor allele

frequency (MAF) and polymorphism information

content (PIC) were estimated using software Pow-

erMarker version 3.0 (http://www.powermarker.net).

Linkage disequilibrium parameter (r2) between SNP

pairs was estimated using the statistical software R

(Team 2014) (https://www.r-project.org/). Decay of

linkage disequilibrium was explored based on the data

of estimated r2 against genetic distance for all SNP

pairs, by fitting a curve with the locally weighted

polynomial regression method (Cleveland 1979). To

evaluate the population structure, principal component

analysis (PCA) was performed using genotypic data.

PCA was completed using software TASSEL 3.0

(http://www.maizegenetics.net/). The first two prin-

cipal components were used to examine the presence

of subpopulation structure.

Genomic selection and cross-validation

The potential of genomic selection was examined

focusing on ridge regression best linear unbiased

prediction (RR-BLUP) implemented in the statistical

package ‘‘rrBLUP’’ (Endelman 2011). Let n be the

number of genotypes and p be the number of markers.

The RR-BLUP model has the form, where y is the

vector of BLUEs of genotypic values obtained in the

phenotypic data analyses, l refers to the overall mean,

a is the vector of additive effects of markers, X = (xij)

is the n 9 p matrix of markers with xij being the

number of a chosen allele at the jth locus for the ith

genotype, and e is the vector of residual terms. In the

model, we assumed that marker and residual effects

are randomly distributed with a� Nð0; Ipa2aÞ and,

where Ip and In denote identity matrices with respec-

tive dimensions, a2a ¼ a2G
�
p and note that a2G and a2e

were the estimated genotypic and residual variance

components in the phenotypic data analyses, and

l refers to the number of locations.

We evaluated the prediction accuracy of genomic

selection applying fivefold cross-validations. Marker

effects were estimated in the training population and the

effects were used to predict the genotypic values in the

test population. The Pearson product-moment correla-

tion coefficient between the predicted and observed

phenotype (rMP) was estimated, and prediction accu-

racy (rGS) was calculated by standardizing rMP by the

square root of the broad-sense heritability. We repeated

the procedure 500 times to reduce the sampling error. In

addition, we examined the prediction accuracy also

within the North Spring soybean (NSs) subpopulation

contrasting it with a random subset of the total

population with the same sample size.

Sampling strategy of markers

Random sampling method (RSM)

We randomly sampled SNPs to form different subsets.

The number of sampled SNPs varied from 5 to 100 %

of the total number of SNPs using five percent

intervals. Fivefold cross-validation was applied to

study the accuracy of genomic selection with the

different subsets. 500 replicates were explored to

eliminate sampling error.

Haplotype block analysis (HBA)

Haplotype analysis was completed using Haploview

4.2 software based on the population of all 235

soybean lines. Haplotype blocks were defined follow-

ing previous suggestions (Gabriel et al. 2002). The

5361 SNPs were classified after haplotype block

analysis into SNPs belonging to haplotype blocks and

SNPs not forming haplotype blocks. We selected then

randomly one SNP per haplotype block plus SNPs not

forming haplotype blocks. This data were then again

used in combination with fivefold cross-validation to

study the accuracy of genomic selection. 500 repli-

cates were explored to eliminate sampling error.

Evenly sampling method (ESM)

The same numbers of SNPs as used in the haplotype

block analyses were selected evenly according to their

position around genome. Fivefold cross-validation and

500 replicates were explored to evaluate the prediction

accuracy of target traits according to previous scenarios.

Results

Extensive phenotyping revealed large genetic

variation for plant height and grain yield

We observed for both traits, plant height and grain

yield per plant, a significant (P\ 0.01) and broad
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genetic variation for the assayed 235 soybean vari-

eties. Lines belonging to the HuangHuai summer

group (HHSs) displayed significantly (P\ 0.01)

higher plant height and larger grain yield per plant

as compared to North Spring (NSs) lines (Table 1).

Heritability estimates of plant height and yield per

plant amounted to 0.96 and 0.63, respectively,

(Table 1).

Analysis of linkage disequilibrium identified

haplotype blocks comprising up to 22 SNPs

Linkage disequilibrium between pairs of SNPs

declined sharply to r2 = 0.1 at around 1000 kb

(Fig. 1). We identify 357 haplotype blocks across

the 20 soybean chromosomes, which comprised a total

of 2164 SNPs. The remaining 3197 SNPs, which were

not forming haplotype blocks, were defined as

‘‘SNPs’’. The number of SNPs composing haplotype

blocks ranged from 2 to 22 and the percentage of SNPs

assigned to haplotype blocks in every chromosome

ranged from 1.28 % (chromosome 1) to 67.31 %

(chromosome 9), respectively, (Fig. 2).

Population structure analysis revealed presence

of genetically distinct subpopulations

After quality filtering, 5275 SNPs were used to explore

the population structure of the 235 soybean varieties.

The minor allele frequency averaged 0.25 (Fig. 3a)

and PIC values averaged 0.27 (Fig. 3b). The first two

principle components explained in total 17 % of the

molecular variation. The scatter plot using the first two

principle components revealed presence of two genet-

ically distinct subpopulations (Fig. 4). Soybean vari-

eties of different ecotypes were separated into two

subsets according to the first principle component.

Genomic prediction accuracies were high for plant

height and moderate for grain yield

We used fivefold cross-validation to examine the

potential of genome-wide prediction for different

soybean traits. The average prediction accuracy was

substantially higher for plant height (rGS = 0.86)

compared to yield per plant (rGS = 0.47) (Fig. 5,

Table S2). Moreover, the standard deviation of the

prediction accuracies was substantially larger for yield

per plant compared to plant height (Fig. 5).

Preselection of markers slightly enhanced genomic

prediction accuracy for grain yield

We studied the effects of different marker sampling

strategies on genomic prediction accuracy for a broad

range of marker densities. The marker sampling

Table 1 Genetic variance, broad-sense heritability and contrast of plant height (cm) and yield per plant (g) performances between

two subpopulations reflecting different ecotypes

Trait Genetic variance Heritability Mean ± SD t value

NSsa HHSsb

Plant height 253.33** 0.96 60.26 ± 1.1450 92.37 ± 2.4931 -12.66**

Yield per plant 10.80** 0.63 20.94 ± 0.3289 25.42 ± 0.5174 -6.71**

** Significantly different at 0.01 level probability
a North Spring soybean
b HuangHuai Summer soybean

Fig. 1 Decay of linkage disequilibrium (r2) with physical map

distances between markers. The curve was fitted using locally

weighted polynomial regression
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strategies were a random sampling method (RSM), a

haplotype block analysis-based sampling (HBA), and

evenly sampling method (ESM). Using a step of 250

SNPs, 265 to 5015 SNPs were randomly selected for

RSM in order to estimate the prediction accuracies

(Supplementary Table S2). In contrast, for HBA we

selected one SNP for each of the 357 identified

haplotype blocks. These SNPs were combined with

the remaining 3197 ‘‘SNPs’’. From this data set, we

randomly selected 172 to 3554 SNPs with a step of 178

SNPs and examined the prediction accuracy for the

target traits (Supplementary Table S2). We also

selected from 172 to 2664 SNPs evenly around

genome with a step of 178 SNPs for ESM strategy

and evaluated the prediction accuracies (Supplemen-

tary Table S2). Generally, prediction accuracies for
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Fig. 2 Distributions of

haplotype block SNPs and

SNPs for the 20 soybean

chromosomes

Fig. 3 a Histogram of minor allele frequency and b polymorphism information content of 5275 SNPs

Fig. 4 Scatter plots of the first two principal components (PC)

for 235 soybean varieties clustered into North Spring soybean

(NSs) and Huanghuai Summer soybean (HHSs) subpopulations
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both plant height and yield per plant increased with

increasing number of SNPs for both sampling strate-

gies (Fig. 6, Supplementary Table S2). Haplotype

block analysis-based sampling facilitated highest

prediction accuracies for both target traits. Randomly

sampling method improved the prediction accuracy

slightly compared with ESM. For yield per plant,

prediction accuracy based on markers selected with

HBA increased by 3.66 and 4.10 % compared with the

RSM and ESM strategies, respectively. In contrast, for

plant height, prediction accuracies were comparable

for all marker selection strategies.

Discussion

Population structure impaired the prediction

accuracy depending on the target trait

Pronounced population structure has to be considered

when evaluating the potential of genomic selection

(Hayes et al. 2009; Guo et al. 2014; Isidro et al. 2015).

In our study, a total of 235 soybean varieties were

sampled reflecting two distinct ecotypes (Fig. 4).

Consequently, prediction accuracies within the sub-

populations of the two distinct ecotypes are potentially

overestimated using cross-validations based on the total

population. To study this in more detail, we also

estimated the prediction accuracies within the larger

subpopulation North Spring (NSs) comprising 185

lines.We found that prediction accuracies decreased by

5.27 and 67.07 % for plant height and yield per plant,

respectively, using the North Spring soybean subset

compared to the total population using a standardized

training population size. Consequently, the population

structure substantially influenced the prediction accu-

racy for yield per plant and has to be considered when

interpreting the results. If the wish is to develop

soybean varieties for breeding programs specifically

designed for the North Spring target environments, the

prediction accuracies for yield per plant are upward

biased. In contrast, plant height is not affected by

subpopulation structure, and thus results of the total

population are also applicable for breeding programs

specifically targeting North Spring environments.

Genomic selection is a promising tool for soybean

breeding

As important agronomic traits, the prediction accura-

cies of plant height and yield were explored in maize

(Zhao et al. 2012a; Riedelsheimer et al. 2012; Crossa

et al. 2013), wheat (Heffner et al. 2011; Poland et al.

2012), rye (Wang et al. 2014), barley (Sallam et al.

2015), and rice (Spindel et al. 2015). The previously

reported prediction accuracies ranged from 0.34 to

0.85 for plant height and from 0.17 to 0.87 for yield.

Our results with prediction accuracies of 0.87 for plant

height and 0.49 for yield per plant (Fig. 5) are lying

within the range of these previously reported values.

The higher prediction accuracies for plant height as

compared to yield can be explained by a less complex

genetic architecture of plant height than yield (Heffner

et al. 2011; Spindel et al. 2015; Sallam et al. 2015).

Different strategies completely or partially relying

on genomic selection have been proposed to be

implemented into breeding programs (Longin et al.

2015; Bassi et al. 2016). The choice of the most suited

strategy thereby depends on the prediction accuracy

achieved by the genomic selection models. At early

selection stages, many individuals are commonly

evaluated at a limited number of locations focusing

on negative selection, i.e., disregarding the inferior

genotypes (He et al. 2016). Genomic selection is for

this early selection stages an interesting alternative if

costs of genotyping are comparable to the costs of a

Fig. 5 Box-Whisker plots of cross-validated prediction accu-

racies of plant height and yield per plant, with the method of

ridge regression best linear unbiased prediction
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single location yield trial (Heffner et al. 2010). We

observed for grain yield a prediction accuracy of 0.47

in our study corresponding to field trials conducted at

3–4 locations (Supplementary Table S2, Fig. 5).

Consequently, genomic selection is for yield per plant

an interesting alternative for negative selection, thus,

replacing early stages of selection in soybean breeding.

This trend of favoring genomic selection for negative

selection of grain yield has been also observed for other

crops such as wheat (He et al. 2016).

Breeding programs exclusively based on genomic

predictions focusing also on positive selection, i.e.,

identifying the best genotype, were only recom-

mended if high prediction accuracies can be achieved

by the genomic selection models (Longin et al. 2015).

The observed prediction accuracy for plant height

amounted to 0.86 in our study (Supplementary

Table S2, Fig. 5). Thus, plant height can be reliably

predicted based on genomic selection alone.

Effects of marker sampling strategy on genomic

prediction accuracies

Meuwissen (Meuwissen 2009) showed in a simulation

study that to take advantages of high marker densities,

comprehensive training data sets exhibiting a large

effective population size are required. Elite soybean

breeding populations, however, display often a limited

effective population size (StMartin 1982). In this case,

marker density may be reduced with only marginal

loss in prediction accuracies for an economic imple-

mentation of genomic selection. We compared in our

study different strategies to reduce the marker density.

Our findings show that the marker sampling strategy

impacted the prediction accuracies only marginally for

plant height (Fig. 6a). In contrast, for grain yield,

prediction accuracies based on markers selected with

HBA increased by approximately 4 % compared with

the two alternative strategies examined in our study

Fig. 6 Cross-validated

prediction accuracies of

ridge regression best linear

unbiased prediction based

on three marker sampling

strategies for plant height

(a) and yield per plant (b).
Marker subsets were

selected using a random

sampling (RSM), a

haplotype block-based

sampling strategy (HBA),

and evenly sampling method

(ESM)
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(Fig. 6b). Thus, applying marker preselection based

on haplotype blocks is an interesting option for a cost-

efficient implementation of genomic selection for

grain yield in soybean breeding.
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