Skip to main content
Log in

Comparative transcript profiling of gene expression between self-incompatible and self-compatible mandarins by suppression subtractive hybridization and cDNA microarray

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Self-incompatibility (SI) is an important trait of Citrus plants that is exploited by farmers to produce seedless fruit. However, the molecular mechanism of SI in Citrus is not well understood. Wuzishatangju (Citrus reticulata Blanco) (SI) is an excellent seedless cultivar selected from a seedy Shatangju cultivar (self-compatible, SC) through spontaneous bud mutation. The two cultivars are therefore excellent materials for studying the mechanisms of SI and/or SC in Citrus. In this study, an integrative strategy combining eight suppression subtractive hybridization libraries with cDNA microarray was used to study the molecular mechanisms that differ between Wuzishatangju and Shatangju (control) mandarins. A custom microarray screen resulted in a total of 1,830 up- or down-regulated clones (false discovery rate <0.05 and a fold change \({ \geqq }\)2) obtained from 9,810 positive clones. The expression of genes involved in embryonic development, ubiquitination pathway, Ca2+-signaling pathway, gibberellins, and auxin was significantly up-regulated in SI Wuzishatangju compared with SC Shatangju mandarin. The microarray analysis suggested that the ubiquitin-mediated proteolysis pathway might be involved in the SI reaction of Wuzishatangju. Additionally, our research highlighted some main genes (mitogen-activated protein kinase, SI S1 family protein, ubiquitin-conjugating factor E4-like, auxin transporter protein 1, and gibberellin receptor) that participate in the SI reaction of Wuzishatangju and could be beneficial for understanding the evolution of SI systems and for breeding seedless citrus fruits in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brock AK, Willmann R, Kolb D, Grefen L, Lajunen HM, Bethke G, Lee J, Nürnberger T, Gust AA (2010) The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol 153:1098–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Busch JW, Schoen DJ (2008) The evolution of self-incompatibility when mates are limiting. Trends Plant Sci 13:128–136

    Article  CAS  PubMed  Google Scholar 

  • Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chai L, Biswas MK, Ge X, Deng X (2010) Isolation, characterization, and expression analysis of an Skp 1 -like gene from ‘Shatian’ Pummelo (Citrus grandis Osbeck). Plant Mol Biol Rep 28:569–577

    Article  CAS  Google Scholar 

  • Chai L, Ge X, Biswas MK, Deng X (2011) Molecular analysis and expression of a floral organ-relative F-box gene isolated from ‘Zigui Shatian’ pummelo (Citrus grandis Osbeck). Mol Biol Rep 38:4429–4436

    Article  CAS  PubMed  Google Scholar 

  • de Nettancourt D (1997) Incompatibility in angiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  • Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E (2009) Histological and molecular analysis of pollen-pistil interaction in clementine. Plant Cell Rep 28:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Foote HC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FC (1994) Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci USA 91:2265–2269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao ZH, Wang PP, Zhuang WB, Zhang Z (2013) Sequence analysis of new S-RNase and SFB alleles in Japanese apricot (Prunus mume). Plant Mol Biol Rep 31:751–762

    Article  CAS  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu C, Wu J, Du YH, Yang YN, Zhang SL (2013) Two different Prunus SFB alleles have the same function in the self-incompatibility reaction. Plant Mol Biol Rep 31:425–434

    Article  CAS  Google Scholar 

  • Guo Y, Guo H, Zhang L, Xie H, Zhao X, Wang F, Li Z, Wang Y, Ma S, Tao J, Wang W, Zhou Y, Yang W, Cheng J (2005) Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol 79:14392–14403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    Article  CAS  PubMed  Google Scholar 

  • Honsho C, Kotsubo M, Fukuda Y, Hamabata Y (2009) Reproductive characteristics for self-compatibility and seedlessness in ‘Nishiuchi Konatsu’, a bud mutation of Hyuganatsu (Citrus tamurana hort. ex Tanaka). HortScience 44:1547–1551

    Google Scholar 

  • Iwano M, Takayama S (2012) Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83

    Article  PubMed  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S (2010) Collaborative non-self recognition system in S-RNase-Based self-incompatibility. Science 330:796–799

    Article  CAS  PubMed  Google Scholar 

  • Li S, Samaj J, Franklin-Tong VE (2007) A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiol 145:236–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Zhu A, Chai L, Zhou W, Yu K, Ding J, Xu J, Deng X (2009) Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J Exp Bot 60:801–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{{-}{\Delta \Delta }C_{\text{T}} }}\) method. Methods 25:402–408

  • Luo M, Xiao Y, Hou L, Luo X, Li D, Pei Y (2003) Cloning and expression analysis of LIM-domain protein gene from cotton (Gossypium hirsutum L.). Acta Genet Sin 30:175–182

    CAS  PubMed  Google Scholar 

  • McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mesejo C, Yuste R, Martínez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiol Plant 148:87–96

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Qin Y, Teixeira da Silva JA, Ye Z, Hu G (2011) Cloning and expression analysis of S-RNase homologous gene in Citrus reticulate Blanco cv. Wuzishatangju. Plant Sci 180:358–367

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Qin Y, Teixeira da Silva JA, Ye Z, Hu G (2013a) Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization. Mol Biol Rep 40:159–169

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Qin Y, Ye Z, Hu G (2013b) Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata. Gene 513:249–259

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Ye Z, Teixeira da Silva JA, Qin Y, Hu G (2013c) Identifying differentially expressed genes in pollen from self-incompatible “Wuzishatangju” and self-compatible “Shatangju” mandarins. Int J Mol Sci 14:8538–8555

    Article  PubMed Central  PubMed  Google Scholar 

  • Miao H, Ye Z, Qin Y, Hu G (2013d) Molecular characterization and expression analysis of S1 self-incompatibility locus-linked pollen 3.15 gene in Citrus reticulata. J Integr Plant Biol 55:443–452

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ngo BX, Wakana A, Kim JH, Mori T, Sakai K (2010) Estimation of self-incompatibility S genotypes of Citrus cultivars and plants based on controlled pollination with restricted number of pollen grains. J Fac Agric Kyushu Univ 55:67–72

    Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

  • Poulter NS, Staiger CJ, Rappoport JZ, Franklin-Tong VE (2010) Actin-binding proteins implicated in the formation of the punctuate actin foci stimulated by the self-incompatibility response in Papaver. Plant Physiol 152:1274–1283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins TP, Xue Y (2004) The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16:2307–2322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu W, Zhu A, Wang Y, Chai L, Ge X, Deng X, Guo W (2012) Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genomics 13:397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roiz L, Goren R, Shoseyov O (1995) Stigmatic RNase in calamondin (Citrus reticulata var. austera × Fortunella sp.). Physiol Plant 94:585–590

    Article  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2003) Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas. J Exp Bot 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  CAS  PubMed  Google Scholar 

  • Sassa H, Kakui H, Minamikawa M (2010) Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod 23:39–43

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Kao TH (2013) Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. Plant Cell 25:470–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  CAS  PubMed  Google Scholar 

  • Tsuchimatsu T, Suwabe K, Shimizu-lnatsugi R, Isokawa S, Pavlidis P, Städler T, Suzuki G, Takayama S, Watanabe M, Shimizu KK (2010) Evolution of self-incompatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Wakana A, Ngo BX, Fukudome I, Kajiwara K (2004) Estimation of the degree of self-incompatibility reaction during flower bud development and production of self-fertilized seeds by bud pollination in self-incompatible Citrus cultivars. J Fac Agric Kyushu Univ 49:307–320

    Google Scholar 

  • Wang P, Lü L (2009) Self-incompatible reaction parts in Citrus grandis ‘Guanximiyou’ and ‘Duweimiyou’—observation of pollination on different pistil parts in vitro. Chin J Trop Crops 30:1105–1108

    Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:15

    Article  CAS  Google Scholar 

  • Ye Z, Zeng T, Xu J, Luo Z, Hu G, Zhang Z, Ji Z, Chen Y, Chen G, Chen L, Lin S (2006) Wuzishatangju, a new mandarin cultivar. J Fruit Sci 23:149–150

    Google Scholar 

  • Ye W, Qin Y, Ye Z, Teixeira da Silva JA, Zhang L, Wu X, Lin S, Hu G (2009) Seedless mechanism of a new mandarin cultivar Wuzishatangju (Citrus reticulata Blanco). Plant Sci 177:19–27

    Article  CAS  Google Scholar 

  • Zhang SW, Ding F, He XH, Luo C, Huang GX, Hu Y (2014) Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Genet Genomics. doi:10.1007/s00438-014-0920-7

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31000899 and 31471858), Research Fund for the Doctoral Program of Higher Education of China (No. 20104404120015 and 20114404110018), Guangdong Province Science Foundation of China (No. S2013020013084, S2013010011950 and 06025843), Foundation for Higher Education Discipline and Specialty Construction of Guangdong Provincial Department of Education (No. 2013KJCX0031), Science and Technology Planning Project of Guangzhou (2010r1-C771), the Open Foundation of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University (No. KSL-CUSAb-2012-09), Key Laboratory of Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China of Guangdong Higher Education Institutes, South China Agricultural University (No. KBL11008) and “211” Construction Fund for Key Subjects of College of Horticulture, South China Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guibing Hu or Yonghua Qin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Supplement S2 Superposition of double-color fluorescent marker. A: Superposition; B: Repeat A experiment (TIFF 1193 kb)

11032_2015_204_MOESM3_ESM.tif

Supplement S3 Agarose gel electrophoresis of total RNA. 1: Pistils of Wuzishatangju; 2: Pistils of Shatangju; 3: Pollen of Wuzishatangju; 4: Pollen of Shatangju; 5: 72 h styles after self-pollination of Wuzishatangju; 6: 72 h styles after cross-pollination of Wuzishatangju × Shatangju; 7, 9, 11, 13, 15, 17: Pistils in differential stages (0, 4, 24, 48, 72, and 96 h) after self-pollination of Wuzishatangju; 8, 10, 12, 14, 16, 18: Pistils in differential stages (0, 4, 24, 48, 72, and 96 h) after cross-pollination of Wuzishatangju. (TIFF 326 kb)

11032_2015_204_MOESM4_ESM.tif

Supplement S4 TreeView representation of ESTs from eight SSH libraries. WY: Forward SSH library of Wuzishatangju pistils; YW: Reverse SSH library of Wuzishatangju pistils; H: Forward SSH library of Wuzishatangju pollen; F: Reverse SSH library of Wuzishatangju pollen; T1: Forward SSH library of 72 h styles after self-pollination of Wuzishatangju; T2: Reverse SSH library of 72 h styles after cross-pollination of Wuzishatangju × Shatangju; 0 h1, 24 h5, 48 h7, 72 h9, 96 h11: Forward SSH library of pistils in differential stages (0, 24, 48, 72, and 96 h) after self-pollination of Wuzishatangju; 0 h2, 24 h6, 48 h8, 72 h10, 96 h12: Reverse SSH library of pistils in differential stages (0, 4, 24, 48, 72, and 96 h) after cross-pollination of Wuzishatangju. (TIFF 1730 kb)

11032_2015_204_MOESM5_ESM.tif

Supplement S5 Scatter plots for the eight SSH libraries. WY: Forward SSH library of Wuzishatangju pistils; YW: Reverse SSH library of Wuzishatangju pistils; H: Forward SSH library of Wuzishatangju pollen; F: Reverse SSH library of Wuzishatangju pollen; T1: Forward SSH library of 72 h styles after self-pollination of Wuzishatangju; T2: Reverse SSH library of 72 h styles after cross-pollination of Wuzishatangju × Shatangju; 72 h9: Forward SSH library of pistils in 72 h after self-pollination of Wuzishatangju; 72 h10: Reverse SSH library of pistils in 72 h after cross-pollination of Wuzishatangju × Shatangju. (TIFF 1780 kb)

Supplement S6 The gene expression ratios based on cDNA microarray from the eight SSH libraries. (XLS 5583 kb)

11032_2015_204_MOESM7_ESM.tif

Supplement S7 Up- and down- regulated clones of eight SSH libraries. A (0, 24, 48, 72, and 96 h): Pistils in different stages (0, 24, 48, 72, and 96 h) after self-pollination of Wuzishatangju mandarin. B (0, 24, 48, 72, and 96 h): Pistils in differential stages (0, 24, 48, 72, and 96 h) after cross-pollination of Wuzishatangju × Shatangju mandarin. (TIFF 3079 kb)

Supplement S8 Ubiquitin-mediated proteolysis signaling pathway (TIFF 1355 kb)

11032_2015_204_MOESM9_ESM.jpg

Supplement S9 A tentative model regarding the main genes and/or pathways involved in the SI reaction of Wuzishatangju mandarin ubiquitin-mediated proteolysis signaling pathway (JPEG 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Ye, Z., Hu, G. et al. Comparative transcript profiling of gene expression between self-incompatible and self-compatible mandarins by suppression subtractive hybridization and cDNA microarray. Mol Breeding 35, 47 (2015). https://doi.org/10.1007/s11032-015-0204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0204-x

Keywords

Navigation