Skip to main content

Advertisement

Log in

Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

To investigate responses to nitrogen and phosphorus stress, 218 recombinant inbred maize (Zea mays L.) lines were grown under low nitrogen, low phosphorus, and control (i.e., nitrogen and phosphorus sufficient) conditions and evaluated at the silking stage for various traits, including leaf area, leaf chlorophyll content, flowering time, the interval between anthesis and silking, and grain yield. Among the 83 quantitative trait loci (QTL) detected, 29 were for controls, another 29 were for low nitrogen, and 25 were low phosphorus. These loci indicate that there were both common and specific genetic mechanisms underlying the investigated traits. Overlapping QTL for leaf size (area, length, and width) leaf chlorophyll level, flowering time, anthesis–silking interval, and grain yield were located at chromosome bin 2.03/2.04, bin 2.06/2.07/2.08, bin 4.01/4.02, bin 5.03/5.04, bin 6.07, bin 9.03, and bin 10.03/10.04. Many of these loci overlapped with previously reported loci controlling root growth as well as tolerance or response to nutrient deficiency. These QTL identify chromosome regions as targets for genetic improvement of low nitrogen and low phosphorus tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant Cell Environ 27:887–895

    Article  CAS  Google Scholar 

  • Bhadoria PBS, Singh S, Claassen N (2001) Phosphorus efficiency of wheat, maize and groundnut grown in low phosphorus supplying soil. In: Horst WJ, Schenk MK, Bürkert A (eds) Plant nutrition—food security and sustainability of agroecosystems. Kluwer Academic Publishers, Dordrecht, pp 530–531

    Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. SSSA Book Ser. 5. SSSA and ASA, Madison, WI, pp 1085–1121

    Google Scholar 

  • Cai H, Liu J, Mi G, Yuan L, Chen X, Chen F, Zhang F (2011) QTL mapping for root traits around flowering stage of maize under field condition. Plant Nutr Fer Sci 17:317–324

    CAS  Google Scholar 

  • Chapman SC, Barretto HJ (1997) Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron J 89:557–562

    Article  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil 313:251–266

    Article  CAS  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2009) Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica, pp 245–252

  • Chun L, Mi G, Li J, Chen F, Zhang F (2005) Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 276:369–382

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Colomb B, Kiniry JR, Debaeke P (2000) Effect of soil phosphorus on leaf development and senescence dynamics of field-grown maize. Agron J 92:428–435

    Article  Google Scholar 

  • Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and post silking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Zhang F, Mi G, Chen F, Li F, Chen X, Li J, Shi L (2009) Interaction between genotypic difference and nitrogen management strategy in determining nitrogen use efficiency of summer maize. Plant Soil 317:267–276

    Article  CAS  Google Scholar 

  • Eik K, Hanway JJ (1965) Some factors affecting development and longevity of leaves of corn. Agron J 57:7–12

    Article  Google Scholar 

  • Gallais A, Coque M (2005) Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica 50:531–547

    Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  PubMed  CAS  Google Scholar 

  • Guingo E, Hèbert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hirel B, Lemaire G (2006) From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. J Crop Improv 15:213–257

    Article  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Frascaroli E, Leipner J, Jompuk C, Stamp P, Fracheboud Y (2005) Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed 16:321–331

    Article  CAS  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    Article  CAS  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to carbuncular mycorrhizal fungi. Crop Sci 40:358–364

    Article  Google Scholar 

  • Landi P, Sanguineti MC, Salvi S, Giuliani S, Bellotti M, Maccaferri M, Conti S, Tuberosa R (2005) Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Mol Breed 15:291–303

    Article  CAS  Google Scholar 

  • Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Bellotti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Lazic Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Lemcoff JH, Loomis RS (1986) Nitrogen influences on yield determination in maize. Crop Sci 26:1017–1022

    Article  Google Scholar 

  • Li M, Guo X, Zhang M, Wang X, Zhang G, Tian Y, Wang Z (2010) Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci 178:454–462

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1993) Mapping genes controlling quantitative traits with MAPMAKER/QTL, 2nd edn. Whitehead Institute Technical Report

  • Liu Y, Mi G, Chen F, Zhang J, Zhang F (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223

    Article  CAS  Google Scholar 

  • Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305:253–265

    Article  CAS  Google Scholar 

  • Liu J, Chen F, Olokhnuud C, Glass ADM, Tong Y, Zhang F, Mi G (2009) Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in nitrogen-use efficiency. J Plant Nutr Soil Sci 172:230–236

    Article  CAS  Google Scholar 

  • Liu J, Cai H, Chu Q, Chen X, Chen F, Yuan L, Mi G, Zhang F (2010) Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. Mol Breed. doi:10.1007/s11032-010-9496-z

  • Lynch JP (1998) The role of nutrient-efficient crops in modern agriculture, In: Rengel Z (eds) Nutrient use in crop production. Haworth Press Inc, pp 241–264

  • Lynch JP (2007) Rhizoeconomics: the roots of shoot growth limitations. Hort Sci 42:1107–1109

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • McCouch SR, Cho YG, Yano M (1997) Report on QTL nomenclature. Rice Gene News 14:11–13

    Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Muchow RC (1988) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment I. Leaf growth and leaf nitrogen. Field Crops Res 18:1–16

    Article  Google Scholar 

  • Muchow RC, Davis R (1988) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment II. Radiation interception and biomass accumulation. Field Crops Res 18:17–30

    Article  Google Scholar 

  • Naismith RW, Johnson MW, Thomas WI (1974) Genetic control of relative calcium, phosphorus, and manganese accumulation on chromosome 9 in maize. Crop Sci 14:845–849

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939, United States Department of Agriculture, Washington

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gene Genet 252:597–607

    CAS  Google Scholar 

  • Paponov IA, Engels C (2003) Effect of nitrogen supply on leaf traits related to photosynthesis during grain filling in two maize genotypes with different N efficiency. J Plant Nutr Soil Sci 166:756–763

    Article  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Plénet D, Etchebest S, Mollier A, Pellerin S (2000a) Growth analysis of maize field crops under phosphorus deficiency: I. Leaf growth. Plant Soil 223:117–130

    Article  Google Scholar 

  • Plénet D, Mollier A, Pellerin S (2000b) Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil 224:259–272

    Article  Google Scholar 

  • Pommel B, Gallais A, Coque M, Quilleré I, Hirel B, Prioul JL, Andrieu B, Floriot M (2006) Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron 24:203–211

    Article  CAS  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55:2461–2472

    Article  PubMed  CAS  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-De-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C (2007) Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed 20:15–29

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  • Sinclair TR, Muchow RC (1995) Effect of nitrogen supply of maize yield: I. Modeling physiological responses. Agron J 87:632–641

    Article  Google Scholar 

  • Sinclair TR, Vadez V (2002) Physiological traits for crop yield improvement in low N and P environments. Plant Soil 245:1–15

    Article  CAS  Google Scholar 

  • Tardieu F, Reymond M, Muller B, Granier C, Simonneau T, Sadok W, Welcker C (2005) Linking physiological and genetic analyses of the control of leaf growth under changing environmental conditions. Austr J Agric Res 56:937–946

    Article  Google Scholar 

  • Tian Q, Chen F, Zhang F, Mi G (2006) Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth. J Plant Nutr 29:317–330

    Article  CAS  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Ruta N, Hund A (2010) QTLs for early vigor of tropical maize. Mol Breed 25:91–103

    Article  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet 97:744–755

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  PubMed  CAS  Google Scholar 

  • van Oosterom EJ, Borrell AK, Chapman SC, Broad IJ, Hammer GL (2010) Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts. Field Crops Res 115:19–28

    Article  Google Scholar 

  • van Reeuwijk LP (1992) Procedures for soil analysis, 3rd edn. ISRIC, Wageningen

    Google Scholar 

  • Vos J, Van Der Putten PEL, Birch CJ (2005) Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crop Res 93:64–73

    Article  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL cartographer 2.5. Department of statistics, North Carolina State University, Raleigh, NC. Guidelines for interpreting and reporting linkage results. Nat Genet 11:241

    Article  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    Article  PubMed  CAS  Google Scholar 

  • Wood CW, Reeves DW, Duffield RR, Edmisten KL (1992) Field chlorophyll measurements for evaluation of corn nitrogen status. J Plant Nutr 15:487–500

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005a) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310

    Article  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005b) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Ministry of Science and Technology ‘973’ program (2011CB100305, 2007CB109300, 2009CB118601), the National Science Foundation of China (No.30890130; No.30821003), Special Fund for Agriculture Profession (201103003), and Chinese University Scientific Fund (2011JS163). We thank Dr Wenxin Liu for the helpful suggestions on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanjun Chen or Guohua Mi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, H., Chu, Q., Yuan, L. et al. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol Breeding 30, 251–266 (2012). https://doi.org/10.1007/s11032-011-9615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9615-5

Keywords

Navigation