Skip to main content
Log in

Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Genome-wide variant detection within a species is the primary initial step towards linking genotypic variation and phenotypes. The conversion of these genetic variants (the most prevalent of these being single-nucleotide polymorphisms or SNPs) into genetic markers is particularly important in agronomically valuable crop species to allow for cost-effective marker-assisted selection strategies, whole-genome fingerprinting, association studies, map-based gene cloning and population-based analyses. Towards these goals, an increasing number of large-scale genetic variant discovery initiatives are being undertaken in conjunction with next-generation sequencing platforms, allowing for drastically quicker and cheaper variant discovery, and leading towards a far more comprehensive view of the genome or transcriptome. This review will summarize the current status of these initiatives and will discuss the expanding role of next-generation sequencing technologies in facilitating crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn SM, Kim TH, Lee S et al (2009) The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res 19:1622–1629

    CAS  PubMed  Google Scholar 

  • Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    CAS  PubMed  Google Scholar 

  • Altshuler D, Pollara VJ, Cowles CR et al (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    CAS  PubMed  Google Scholar 

  • Amaral AJ, Megens HJ, Kerstens HHD et al (2009) Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 10:374

    PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–135

    CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    CAS  PubMed  Google Scholar 

  • Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–325

    CAS  PubMed  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploidy plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    CAS  PubMed  Google Scholar 

  • Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18:324–330

    CAS  PubMed  Google Scholar 

  • Chaisson M, Pevzner P, Tang H (2004) Fragment assembly with short reads. Bioinformatics 20:2067–2074

    CAS  PubMed  Google Scholar 

  • Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levesque AC, Tisserat N, Buell CR (2008) Analysis of the Pythium ultimum transcriptome using Sanger and pyrosequencing approaches. BMC Genomics 9:542

    PubMed  Google Scholar 

  • Choi IY, Hyten DL, Matukimalli LK et al (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    CAS  PubMed  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    CAS  PubMed  Google Scholar 

  • Clifton SW, Mitreva M (2009) Strategies for undertaking expressed sequence tag (EST) projects. Methods Mol Biol 533:13–32

    CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphate sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    CAS  PubMed  Google Scholar 

  • De Bona F, Ossowski S, Schneeberger K, Rätsch G (2008) Optimal spliced alignments of short sequence reads. Bioinformatics 24:i174

    PubMed  Google Scholar 

  • Diguistini S, Liao NY, Platt D et al (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10:R94

    PubMed  Google Scholar 

  • Dila D, Sutherland E, Moran L, Slatko B, Raleigh EA (1990) Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J Bacteriol 172:4888–4900

    CAS  PubMed  Google Scholar 

  • Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res 17:1697–1706

    CAS  PubMed  Google Scholar 

  • Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci 100:8817–8822

    CAS  PubMed  Google Scholar 

  • Drmanac R, Sparks AB, Callow MJ et al. (2009) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science doi:10.1126/Science.1181498

  • Duran C, Appleby N, Clark T et al (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–D953

    CAS  PubMed  Google Scholar 

  • Eck SH, Benet-Pages A, Flisikowski K, Meitinger T, Fries R, Strom TM (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol 10:R82

    PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  PubMed  Google Scholar 

  • Emrich SJ, Li L, Wen T-J et al (2007a) Nearly identical paralogs: Implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    CAS  PubMed  Google Scholar 

  • Emrich SJ, Barbazuk WB, Li L, Schanble PS (2007b) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73

    CAS  PubMed  Google Scholar 

  • Erlich Y, Mitra PP, delaBastide M, McCombie WR, Hannon GJ (2008) Alta-cyclic: a self-optimizing base caller for next-generation sequencing. Nat Methods 5:679–682

    CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequenct birth and death of MIRNA genes. PLoS ONE 2:e219

    PubMed  Google Scholar 

  • FAO (2000) Global forest resources assessment 2000—Main report. FAO Forestry Paper 140

  • Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachement on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34:e22

    PubMed  Google Scholar 

  • Fellers JP (2008) Genome filtering using methylation-sensitive restriction enzymes with six base pair recognition sites. Plant Genome 1:146–152

    CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES et al (2009) Large-scale discovery of gene-enriched SNPs. Plant Genome 2:121–133

    CAS  Google Scholar 

  • Grover CE, Hawkins JS, Wendel JF (2008) Phylogenetic insights into the pace and pattern of plant genome size evolution. In: Volff J-N (ed) Plant genomes. Karger, Basel, pp 57–68

    Google Scholar 

  • Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109

    CAS  PubMed  Google Scholar 

  • Hillier LW, Marth GT, Quinlan AR et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188

    CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  Google Scholar 

  • Hunkapiller T, Kaiser RJ, Koop BF, Hood L (1991) Large-scale and automated DNA sequence determination. Science 254:59–67

    CAS  PubMed  Google Scholar 

  • Initiative TheArabidopsisGenome (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER, Dangl JL, Jones CD (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23:2942–2944

    CAS  PubMed  Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vitro protein-DNA interactions. Science 316:1497–1502

    CAS  PubMed  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57

    PubMed  Google Scholar 

  • Kerstens HHD, Crooijmans RPMA, Veenendaal A, Dibbits BW, Chin-A-Woeng TFC, den Dunnen JT, Groenen MAM (2009) Large scale single nucleoptide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics 10:479

    PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Saltzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008a) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    CAS  PubMed  Google Scholar 

  • Li H, Ruan J, Durbin R (2008b) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    CAS  PubMed  Google Scholar 

  • Li JB, Gao Y, Aach J et al (2009) Multiplex padlock targeted sequencing reveal human hypermutable CpG variations. Genome Res 19:1606–1615

    PubMed  Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424

    PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    CAS  PubMed  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K et al (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci 105:4951–4956

    CAS  PubMed  Google Scholar 

  • Luckey JA, Drossman H, Kostichka AJ, Mead DA, D’Cunha J, Norris TB, Smith LM (1990) High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res 18:4417–4421

    CAS  PubMed  Google Scholar 

  • Maglia G, Restrepo MR, Mikhailova E, Bayley H (2008) Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci 105:19720–19725

    CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Marth GT, Korf I, Yandell MD et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452–456

    CAS  PubMed  Google Scholar 

  • Martienssen RA (1998) Transposons, DNA methylation and gene control. Trends Genet 14:263–264

    CAS  PubMed  Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009) SNP discovery via genomic reduction, barcoding, and 454 pyrosequencing in amaranth. Plant Genome 2:260–270

    CAS  Google Scholar 

  • McKernan KJ, Peckham HE, Costa G et al. (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two base encoding. Genome Res doi:10.1101/gr.091868.109

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  • Moskal WA Jr, Wu HC, Underwood BA, Wang W, Town CD, Xiao Y (2007) Experimental validation of novel genes predicted in the unannotated regions of the Arabidopsis genome. BMC Genomics 8:18

    PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    CAS  PubMed  Google Scholar 

  • Nobuta K, Lu C, Shrivastava R et al (2008) Distinct size distribution of endogenous siRNAs in maize: evidence from deep sequencing in the mop1–1 mutant. Proc Natl Acad Sci 105:14958–14963

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    PubMed  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909

    CAS  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM et al (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    CAS  PubMed  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461:814–818

    CAS  PubMed  Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189

    CAS  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL et al (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    PubMed  Google Scholar 

  • Parkin IAP, Sharpe PAG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of the amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  PubMed  Google Scholar 

  • Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. Methods Mol Biol 533:1–12

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci 98:9748–9753

    CAS  PubMed  Google Scholar 

  • Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174

    CAS  PubMed  Google Scholar 

  • Pop M, Salzberg SL (2007) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142–149

    Google Scholar 

  • Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238:336–341

    CAS  PubMed  Google Scholar 

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–852

    CAS  PubMed  Google Scholar 

  • Quinlan AR, Stewart DA, Stramberg MP, Marth GT (2008) PyroBayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5:179–181

    CAS  PubMed  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308

    CAS  PubMed  Google Scholar 

  • Rabinowicz P, McCombie WR, Martienssen RA (2003) Gene enrichment in plant genomic shotgun libraries. Curr Opin Plant Biol 6:150–156

    CAS  PubMed  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    CAS  PubMed  Google Scholar 

  • Raleigh EA, Wilson G (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci 83:9070–9074

    CAS  PubMed  Google Scholar 

  • Ramos AM, Crooijmans RPMA, Affara AJ et al (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4:e6524

    PubMed  Google Scholar 

  • Ren X-Y, Vorst O, Fiers MWEJ et al (2006) In plants, highly expressed genes are the least compact. Trends Genet 22:528–532

    CAS  PubMed  Google Scholar 

  • Roe BA (2004) Shotgun library construction for DNA sequencing. Methods Mol Biol 255:171–187

    CAS  PubMed  Google Scholar 

  • Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    CAS  PubMed  Google Scholar 

  • Rostoks N, Park YJ, Ramakrishna W et al (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics 2:51–59

    CAS  PubMed  Google Scholar 

  • Rostoks N, Mudie S, Cardle L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    CAS  PubMed  Google Scholar 

  • Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M (2009) SHRIMP: accurate mapping of short color-space reads. PLoS Comput Biol 5:e10000386

    Google Scholar 

  • Rusk N (2009) Cheap third-generation sequencing. Nat Methods 6:244–245

    CAS  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    CAS  PubMed  Google Scholar 

  • Sakharkar MK, Chow VTK, Kangueane P (2004) Distributions of exons and introns in the human genome. In Silico Biol 4:387–393

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    CAS  PubMed  Google Scholar 

  • SanMiguel P, Vitte C (2008) The LTR-retrotransposons of maize. In: Bennetzen JL, Hake S (eds) Handbook of maize-volume II: domestication, genetics and genomics. Springer, Netherlands, p 307

    Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    CAS  PubMed  Google Scholar 

  • Shcheglov AS, Zhulidov PA, Bogdanova EA, Shagin DA (2007) Normalization of cDNA libraries. In: Buzdin AA, Lukyanov SA (eds) Nucleic acids hybridizations: modern applications. Springer, Netherlands, pp 97–102

    Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    CAS  PubMed  Google Scholar 

  • Smailus DE, Marziali A, Dextras P et al (2006) Simple, robust methods for high-throughput nanoliter-scale DNA sequencing. Genome Res 15:1447–1450

    Google Scholar 

  • Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    CAS  PubMed  Google Scholar 

  • Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics 9:128

    PubMed  Google Scholar 

  • Sultan M, Schulz MH, Richard H et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    CAS  PubMed  Google Scholar 

  • Sundquist A, Ronaghu M, Tang H et al (2007) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One 2:484

    Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    PubMed  Google Scholar 

  • Swerdlow H, Gesteland R (1990) Cappilary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res 18:1415–1419

    CAS  PubMed  Google Scholar 

  • Swigonova Z, Lai J, Ma J et al (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    CAS  PubMed  Google Scholar 

  • Tewhey R, Warner JB, Nakano M et al. (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol doi:10.1038/nbt.1583

  • Trick M, Long Y, Meng J, Bancroft I (2009a) Single nucleotide polymorphism (SNP) discovery in the polyploidy Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    CAS  PubMed  Google Scholar 

  • Trick M, Cheung F, Drou N, Fraser F, Lobenhofer EK, Hurban P, Magusin A, Town CD, Bancroft I (2009b) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50

    PubMed  Google Scholar 

  • Turcatti G, Romieu A, Fedurco M, Tairi AP (2008) A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res 36:e25

    PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    CAS  PubMed  Google Scholar 

  • Useche FJ, Gao G, Hanafey M, Rafalski A (2001) High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform 12:194–203

    CAS  PubMed  Google Scholar 

  • Van Tassel CP, Smith TPL, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    PubMed  Google Scholar 

  • Wang J, Wang W, Li R et al (2008) The diploid sequence of an Asian individual. Nature 456:60–65

    CAS  PubMed  Google Scholar 

  • Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501

    CAS  PubMed  Google Scholar 

  • Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    CAS  PubMed  Google Scholar 

  • Whiteford N, Haslam N, Weber G et al (2005) An analysis of the feasibility of short read sequencing. Nucleic Acids Res 33:e171

    PubMed  Google Scholar 

  • Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7:275

    PubMed  Google Scholar 

  • Wilhelm B, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett C, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Deschamps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschamps, S., Campbell, M.A. Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breeding 25, 553–570 (2010). https://doi.org/10.1007/s11032-009-9357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9357-9

Keywords

Navigation