Skip to main content
Log in

Detection and mapping of SSRs in rye ESTs from aluminium-stressed roots

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Aluminium toxicity is a major problem for crop production on acid soils. Rye (Secale cereale L.) has one of the most efficient group of genes for aluminium tolerance, at least, four independent and dominant loci, Alt1, Alt2, Alt3 and Alt4, located on chromosome arms 6RS, 3RS, 4RL and 7RS, have been described. The increasing availability of expressed sequence tags in rye and related cereals provides a valuable resource of non-anonymous DNA molecular markers. In order to obtain simple sequence repeat (SSR) markers related with Al tolerance more than 1,199 public accessible rye cDNA sequences from Al-stressed roots were exploited as a resource for SSR markers development. From a total of 21 S. cereale microsatellite (SCM) loci analysed, 12 were located on chromosomes 1R, 2R, 3R, 4R and 5R, using wheat–rye addition lines or mapped using a F2 population segregating for Al tolerance. Seven SCM loci were included in a rye map with other SCIM and RAPD markers. Moreover, 14 SCM loci could be associated to proteins with known or unknown function. The possible implications of these sequences in aluminium tolerance mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

EST:

Expressed sequence tag

rali :

Rye aluminium induced

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SCIM:

Secale cereale inter-microsatellite

SCM:

Secale cereale microsatellite

SSR:

Simple sequence repeat

wali :

Wheat aluminium induced

References

  • Anderson OD, Butler E, Chao S, Gustafson JP, Han PS, Hsia CC, Kang Y, Lazo GR, Miller R, Rausch CJ, Seaton CL, Tong JC (2000) The structure and function of the expressed portion of the wheat genomes—aluminium-stressed root tip cDNA library from rye (Secale cereale L.). GenBank citations

  • Aniol A (2004) Chromosomal location of aluminium tolerance genes in rye. Plant Breed 123:132–136

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • Aniol A, Madej L (1996) Genetic variation for aluminum tolerance in rye. Vortr Pflanzenz chtg 35:201–211

    Google Scholar 

  • Ayers NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellite and single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  Google Scholar 

  • Basu A, Basu U, Taylor GJ (1994) Induction of microsomal membrane proteins in roots of an aluminium-resistant cultivar of Triticum aestivum L. under conditions of aluminium stress. Plant Physiol 104:1007–1013

    PubMed  CAS  Google Scholar 

  • Bednarek PT, Masojć P, Lewandowska R, Mysków B (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet 44(1):21–33

    PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucleic Acids Res 30(1):17–20

    Article  PubMed  CAS  Google Scholar 

  • Callen DF, Thomson AD, Shen Y, Phillips H, Richards RJ, Mulley JC, Sutherland GR (1993) Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52:922–927

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). 2. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T et al (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Engeseth NJ, Pacovsky RS, Newman T, Ohlrogge JB (1996) Characterization of an acyl-CoA-binding protein from Arabidopsis thaliana. Arch Biochem Biophys 331:55–62

    Article  PubMed  CAS  Google Scholar 

  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST–SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Tsugita S, Matsumoto H (1996) Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol Plant 96:21–28

    Article  CAS  Google Scholar 

  • Foy C (1983) The physiology of plant adaptation to mineral stress. Iowa State J Res 57:355–392

    CAS  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    Article  CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998a) Molecular markers linked to the aluminum tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109

    Article  CAS  Google Scholar 

  • Gallego FJ, López-Solanilla E, Figueiras AM, Benito C (1998b) Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theor Appl Genet 96:426–434

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2001) Development of microsatellite markers in rye: map construction. In: proceedings of the Eucarpia rye meeting, 4–7, pp 333–340

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminium in an aluminium-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequences repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  • Kasan H (1993) The role of waste activated sludge and bacteria in metal-ion removal from solution. Crit Rev Environ Technol 23:79–117

    Article  CAS  Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MAPC (2004) How do crop plants tolerate acid soils?—mechanisms of aluminum tolerance and phosphorous efficiency. Ann Rev Plant Biol 55:459–493

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JC (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    PubMed  CAS  Google Scholar 

  • Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite in barley. Theor Appl Genet 107:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Loarce Y, Hueros G, Ferrer E (1996) A molecular linkage map of rye. Theor Appl Genet 93:1112–1118

    Article  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids on detoxification of aluminium in higher plants. Plant Cell Physiol 41:383–390

    PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001a) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  CAS  Google Scholar 

  • Ma XF, Wanous MK, Houchins K, Rodríguez-Milla MA, Goicoechea PG, Wang Z, Xie M, Gustafson JP (2001b) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

    Article  CAS  Google Scholar 

  • Ma Q, Rengel Z, Kuo J (2002) Aluminium toxicity in rye (Secale cereale L.): root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann Bot 89:241–244

    Article  CAS  Google Scholar 

  • Masojć P, Mysków B, Milczarski P (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279

    Article  Google Scholar 

  • Matos M, Camacho MV, Pérez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) A new aluminium tolerance gene located on rye chromosome 7R. Theor Appl Genet 111:360–369

    Article  PubMed  CAS  Google Scholar 

  • Miftahudin G, Scoles J, Gustafson JP (2002) AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104:626–631

    Article  CAS  Google Scholar 

  • Ndong C, Daniluk J, Huner NPA, Sarman F (2000) Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol Biol 45:691–703

    Article  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  • Philipp U, Wehling P, Wricke G (1994) A linkage map of rye. Theor Appl Genet 88:243–248

    Article  CAS  Google Scholar 

  • Raman H, Zhang K, Appels R, Moroni S, Cakir M et al (2003) Molecular mapping and mechanism of aluminum tolerance in five doubled haploid populations of Triticum aestivum L (bread wheat). In: proceedings of 10th international wheat genetics symposium, Italy, pp 404–406

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF et al (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich DS, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh RA (2000) Simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Richards KD, Gardner RC (1994) The effect of aluminum treatment on wheat roots—expression of heat-shock, histone and SHH genes. Plant Sci 98:37–45

    Article  CAS  Google Scholar 

  • Richards KD, Snowden KC, Gardner RC (1994) wali6 and wali7—genes induced by aluminum in wheat (Triticum aestivum L.). Plant Physiol 105:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of the wheat genome. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodríguez-Milla MA, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminium stress in rye. Plant Physiol 130:1706–1716

    Article  CAS  Google Scholar 

  • Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminium activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94:6547–6552

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17:8543–8551

    Article  PubMed  CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  PubMed  CAS  Google Scholar 

  • Saal B, Wricke G (2002) Clustering of amplified fragment length polymorphism markers in a linkage group. Plant Breed 121:117–123

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Savenstrand H, Brosche M, Angehagen M, Strid A (2000) Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ 23:689–700

    Article  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton P, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508–510

    Article  Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC (1996) Simple sequence repeat markers developed from maize found in the GenBank database: map construction. Crop Sci 36:1676–1683

    Article  CAS  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong HY, Osawa H et al (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminium in wheat (Triticum aestivum L.) roots. Plant Physiol 103:855–861

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Richards KD, Gardner RC (1995) Aluminium-induced genes. Plant Physiol 107:341–348

    PubMed  CAS  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B, and D genome. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Taylor GJ, Basu A, Basu U, Slaski JJ, Zhang G, Good A (1997) Al-induced, 51 kilodalton, membrane-bound proteins are associated with resistance to Al in a segregating population of wheat. Plant Physiol 114:362–372

    Google Scholar 

  • Temnykh S, Park WD, Ayers N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (1999) Mapping and genome organization of microsatellites in rice Oryza sativa. Theor Appl Genet 100:698–712

    Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derive SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–442

    PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Börner A, Korzun V, Steina N, Sorrells ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST–SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Walsh PS, Fildes NJ, Reynolds R (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWa. Nucleic Acids Res 24:2807–2812

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Webwe JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Wanous MK, Goicoechea PG, Gustafson JP (1995) RFLP maps of rye chromosomes 6R and 7R including terminal C-bands. Genome 38:999–1004

    CAS  PubMed  Google Scholar 

  • Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206:29–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr A.J. Lukaszewski for kindly providing the wheat–rye disomic addition lines. This work was supported by the research grants AGL 200306470 from the Ministry of Education and Science of Spain (DGICYT), PR27/05-13599 from the Santander/Complutense and POCI/AGR/58174/2004 from the Ministry of Science and Technology (FCT) of Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, M., Pérez-Flores, V., Camacho, M.V. et al. Detection and mapping of SSRs in rye ESTs from aluminium-stressed roots. Mol Breeding 20, 103–115 (2007). https://doi.org/10.1007/s11032-007-9077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9077-y

Keywords

Navigation