Skip to main content
Log in

Validation and characterization of a major QTL affecting leaf ABA concentration in maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A previous study conducted on a maize (Zea mays L.) mapping population derived from Os420 × IABO78 identified a quantitative trait locus (QTL) for leaf-abscisic acid concentration (L-ABA) on chromosome 2 (bin 2.04). In order to validate this QTL, we analyzed with RFLP markers 16 F4 lines obtained by divergent selection for L-ABA from the same source. Three RFLPs mapping near bin 2.04 showed skewed allelic frequencies; the L-ABA increasing allele (+) was more frequent within the eight lines selected for high L-ABA, while the decreasing allele (−) was more frequent within the eight lines selected for low L-ABA. To characterize more accurately the direct and associated effects of this QTL, near-isogenic lines were developed by molecular marker-assisted back-crossing; four backcross-derived lines were homozygous (+/+) at the QTL and four were (−/−). A pair of near-isogenic hybrids (+/+) and (−/−) at the QTL were also produced. These materials were field tested under water-stressed and well-watered conditions. Across water regimes, the four (+/+) lines averaged a significantly higher mean value than the four (−/−) lines for L-ABA (494 vs. 396 ng ABA g−1 DW) and a significantly lower mean value for relative water content (90.6 vs. 92.0%). The (+/+) hybrid exceeded the (−/−) for L-ABA (476 vs. 325 ng  g−1 DW) and was less affected by root lodging (44.6 vs. 66.1%). Our results validate the presence of a major QTL for L-ABA on bin 2.04 and indicate that the QTL also affects root traits and relative water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASI:

anthesis-silking interval

BDL:

backcross-derived line

L-ABA:

leaf abscisic acid concentration

MAB:

marker-assisted backcross

NIH:

near-isogenic hybrid

QTL:

quantitative trait locus

RFLP:

restriction fragment length polymorphism

RWC:

relative water content

SSR:

simple sequence repeat

References

  • M.J. Asins (2002) ArticleTitlePresent and future of quantitative trait locus analysis in plant breeding Plant Breed. 121 281–291 Occurrence Handle10.1046/j.1439-0523.2002.730285.x

    Article  Google Scholar 

  • A. Blum (2002) Drought tolerance – is it a complex trait? N.P. Saxena J.C. O’Toole (Eds) Field Screening for Drought Tolerance in Crop Plants with Emphasis on Rice. Proceedings of an International Workshop on Field Screening for Drought Tolerance in Rice ICRISAT PatancheruIndia 17–22

    Google Scholar 

  • J. Bolaños G.O. Edmeades L. Martinez (1993) ArticleTitleEight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought adaptive physiological and morphological traits Field Crops Res. 31 269–286 Occurrence Handle10.1016/0378-4290(93)90066-V

    Article  Google Scholar 

  • J. Bolaños G.O. Edmeades (1996) ArticleTitleThe importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize Field Crops Res. 48 65–80 Occurrence Handle10.1016/0378-4290(96)00036-6

    Article  Google Scholar 

  • E.A. Bray (1997) ArticleTitlePlant responses to water deficit Trends Plant Sci. 2 48–54 Occurrence Handle10.1016/S1360-1385(97)82562-9

    Article  Google Scholar 

  • E.A. Bray (2002a) ArticleTitleAbscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome Plant Cell Environ. 25 153–161 Occurrence Handle10.1046/j.1365-3040.2002.00746.x Occurrence Handle1:CAS:528:DC%2BD38Xhslaktbs%3D

    Article  CAS  Google Scholar 

  • E.A. Bray (2002b) ArticleTitleClassification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data Ann. Bot. 89 803–811 Occurrence Handle10.1093/aob/mcf104 Occurrence Handle1:CAS:528:DC%2BD38XlsVeitL8%3D

    Article  CAS  Google Scholar 

  • M.C. Champoux G. Wang S. Sarkarung D.J. Mackill J.C. O’Toole N. Huang S.R. McCouch (1995) ArticleTitleLocating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers Theor. Appl. Genet. 90 969–981 Occurrence Handle10.1007/BF00222910 Occurrence Handle1:CAS:528:DyaK2MXnsF2rurg%3D

    Article  CAS  Google Scholar 

  • T.J. Close (1997) ArticleTitleDehydrins: a commonality in the response of plants to dehydration and low temperature Physiol. Plantarum 100 291–296 Occurrence Handle10.1034/j.1399-3054.1997.1000210.x Occurrence Handle1:CAS:528:DyaK2sXkvFersbo%3D

    Article  CAS  Google Scholar 

  • S. Conti E. Frascaroli F. Gherardi P. Landi M.C. Sanguineti S. Tuberosa R. Stefanelli et al. (1994) Accumulation of and response to abscisic acid in maize A. Bianchi (Eds) Proceedings of the XVI Conference of the EucarpiaMaize and Sorghum Section Bergamo Italy 212–223

    Google Scholar 

  • G.S. Hemamalini H.E. Shashidhar S. Hittalmani (2000) ArticleTitleMolecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.) Euphytica 112 69–78 Occurrence Handle10.1023/A:1003854224905 Occurrence Handle1:CAS:528:DC%2BD3cXjtVOkurY%3D

    Article  CAS  Google Scholar 

  • E. Hose E. Steudle W. Hartung (2000) ArticleTitleAbscisic acid and hydraulic conductivity of maize roots: a study using cell and root pressure probes Planta 211 874–882 Occurrence Handle10.1007/s004250000412 Occurrence Handle1:CAS:528:DC%2BD3cXotVKnt7k%3D Occurrence Handle11144273

    Article  CAS  PubMed  Google Scholar 

  • J. Ingram D. Bartels (1996) ArticleTitleThe molecular basis of dehydration tolerance in plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 377–403 Occurrence Handle10.1146/annurev.arplant.47.1.377 Occurrence Handle1:CAS:528:DyaK28XjtlWgtr0%3D Occurrence Handle15012294

    Article  CAS  PubMed  Google Scholar 

  • P. Innes R.D. Blackwell S.A. Quarrie (1984) ArticleTitleSome effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat J. Agric. Sci. 102 341–351 Occurrence Handle1:CAS:528:DyaL2cXktVCjtL0%3D

    CAS  Google Scholar 

  • P. Landi S. Conti F. Gherardi M.C. Sanguineti R. Tuberosa (1995) ArticleTitleGenetic analysis of leaf ABA concentration and of agronomic traits in maize hybrids grown under different water regimes Maydica 40 179–186

    Google Scholar 

  • P. Landi M.C. Sanguineti S. Conti R. Tuberosa (2001) ArticleTitleDirect and correlated responses to divergent selection for leaf abscisic acid concentration in two maize populations Crop Sci. 41 335–344 Occurrence Handle1:CAS:528:DC%2BD3MXlsVOku7w%3D

    CAS  Google Scholar 

  • P. Landi S. Salvi M.C. Sanguineti S. Stefanelli R. Tuberosa (2002) ArticleTitleDevelopment and preliminary evaluation of near-isogenic lines differing for a QTL which affects leaf ABA concentration Maize Genet. Coop. Newsletter 76 7–8

    Google Scholar 

  • A. Larqué-Saavedra R.L. Wain (1976) ArticleTitleStudies on plant growth-regulating substances. XLII. Abscisic acid as a genetic character related to drought tolerance Ann. Appl. Biol. 83 291–297

    Google Scholar 

  • C. Lebreton V. Lazic-Jancic A. Steed S. Pekic S.A. Quarrie (1995) ArticleTitleIdentification of QTL for drought responses in maize and their use in testing causal relationships between traits J. Exp. Bot. 46 853–865 Occurrence Handle1:CAS:528:DyaK2MXntFWksL8%3D

    CAS  Google Scholar 

  • M. Lee N. Sharopova W.D. Beavis D. Grant M. Katt D. Blair A. Hallauer (2002) ArticleTitleExpanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population Plant Mol. Biol. 48 453–461 Occurrence Handle10.1023/A:1014893521186 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrsbg%3D Occurrence Handle11999829

    Article  CAS  PubMed  Google Scholar 

  • M.M. Ludlow R.C. Muchow (1990) ArticleTitleA critical evaluation of traits for improving crop yields in water-limited environments Adv. Agron. 43 107–153

    Google Scholar 

  • A.H. Price K.A. Steele B.J. Moore P.B. Barraclough L.J. Clark (2000) ArticleTitleA combined RFLPAFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability Theor. Appl. Genet. 100 49–56 Occurrence Handle10.1007/s001220050007 Occurrence Handle1:CAS:528:DC%2BD3cXht1aqtrw%3D

    Article  CAS  Google Scholar 

  • A.H. Price J. Townend M.P. Jones A. Audebert B. Courtois (2002a) ArticleTitleMapping QTLs associated with drought avoidance in upland rice approach grown in the Philippines and West Africa Plant Mol. Biol. 48 683–695 Occurrence Handle10.1023/A:1014805625790 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrt7w%3D

    Article  CAS  Google Scholar 

  • A.H. Price K.A. Steele B.J. Moore R.G.W. Jones (2002b) ArticleTitleUpland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. II. Mapping quantitative trait loci for root morphology and distribution Field Crop Res. 76 25–43 Occurrence Handle10.1016/S0378-4290(02)00010-2

    Article  Google Scholar 

  • S.A. Quarrie H.G. Jones (1977) ArticleTitleEffects of abscisic acid and water stress on development and morphology of wheat J. Exp. Bot. 28 192–203 Occurrence Handle1:CAS:528:DyaE2sXksl2msrw%3D

    CAS  Google Scholar 

  • S.A. Quarrie (1991) Implications of genetic differences in ABA accumulation for crop production W.J. Davies H.G. Jones (Eds) Abscisic Acid: Physiology and Biochemistry Bios Scientific Publishers OxfordUK 227–243

    Google Scholar 

  • S.A. Quarrie V. Lazic Jancic D. Kovacevic A. Steed S. Pekic (1999) ArticleTitleBulk segregant analysis with molecular markers and its use for improving drought resistance in maize J. Exp. Bot. 50 1299–1306 Occurrence Handle10.1093/jexbot/50.337.1299 Occurrence Handle1:CAS:528:DyaK1MXltlKis7o%3D

    Article  CAS  Google Scholar 

  • J.J. Read R.C. Johnson B.F. Carver S.A. Quarrie (1991) ArticleTitleCarbon isotope discrimination, gas exchangeand yield of spring wheat selected for abscisic acid content Crop Sci. 31 139–146 Occurrence Handle1:CAS:528:DyaK3MXhvVagtL8%3D

    CAS  Google Scholar 

  • E.D. Redona D.J. Mackill (1998) ArticleTitleQuantitative trait locus analysis for rice panicle and grain characteristics Theor. Appl. Genet. 96 957–963 Occurrence Handle10.1007/s001220050826 Occurrence Handle1:CAS:528:DyaK1cXksFShsr8%3D

    Article  CAS  Google Scholar 

  • J.M. Ribaut M. Banziger J. Betran C. Jiang G.O. Edmeades K. Dreher D. Hoisington (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize M.S. Kang (Eds) Quantitative Genetics, Genomicsand Plant Breeding CABI Publishing Wallingford 85–99

    Google Scholar 

  • I.N. Saab R.E. Sharp J. Pritchard G.S. Voetberg (1990) ArticleTitleIncreased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potential Plant Physiol. 93 1329–1336 Occurrence Handle1:CAS:528:DyaK3cXmtVyntb0%3D

    CAS  Google Scholar 

  • S. Salvi R. Tuberosa E. Chiapparino M. Maccaferri S. Veillet L. Beuningen ParticleVan P. Isaac K.K. Edwards R.L. Phillips (2002) ArticleTitleToward positional cloning of Vgt1a QTL controlling the transition from the vegetative to the reproductive phase in maize Plant Mol. Biol. 48 601–613 Occurrence Handle10.1023/A:1014838024509 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrtrg%3D Occurrence Handle11999837

    Article  CAS  PubMed  Google Scholar 

  • Salvi S., Morgante M., Fengler K., Meeley B., Ananiev E., Svitashev S., Bruggemann E., Niu X., Li B., Tingey S.C., Tomes D., Guo-Hua Miao G.H., Phillips R.L. and Tuberosa R. 2003. Progress in the positional cloning of V1, a QTL controlling owering time in maize. In: Proc. 57th Annu. Corn and Sorghum Res. Conf., American Seed Trade Association, pp. 1--18.

  • M.C. Sanguineti S. Conti P. Landi R. Tuberosa (1996) ArticleTitleAbscisic acid concentration in maize leaves: genetic control and response to divergent selection in two populations Maydica 41 193–203

    Google Scholar 

  • M.C. Sanguineti M.M. Giuliani G. Govi R. Tuberosa P. Landi (1998) ArticleTitleRoot and shoot traits of maize inbred lines grown in the field and in hydroponic culture and their relationships with root lodging Maydica 43 211–216

    Google Scholar 

  • M.C. Sanguineti R. Tuberosa P. Landi S. Salvi M. Maccaferri E. Casarini S. Conti (1999) ArticleTitleQTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize J. Exp. Bot. 50 1289–1297 Occurrence Handle10.1093/jexbot/50.337.1289 Occurrence Handle1:CAS:528:DyaK1MXltlKis70%3D

    Article  CAS  Google Scholar 

  • T.L. Setter (1997) Role of the phytohormone ABA in drought tolerance: potential utility as a selection tool G.O. Edmeades M. Bänziger H.R. Mickelson C.B. Peña-Valdivia (Eds) Developing Drought- and low N-tolerant maize. Proceedings of a Symposium CIMMYT El BatánMexico 142–150

    Google Scholar 

  • R.E. Sharp W.J. Davies (1985) ArticleTitleRoot growth and water uptake by maize plants in drying soil J. Exp. Bot. 36 1441–1456

    Google Scholar 

  • R.E. Sharp Y.J. Wu G.S. Voetberg I.N. Saab M.E. LeNoble (1994) ArticleTitleConfirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials J. Exp. Bot. 45 1743–1751 Occurrence Handle1:CAS:528:DyaK2MXislCltLw%3D

    CAS  Google Scholar 

  • R.E. Sharp (1996) ArticleTitleRegulation of plant growth responses to low soil water potentials Hort. Sci. 31 36–39

    Google Scholar 

  • R.E. Sharp (2002) ArticleTitleInteraction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress Plant Cell Environ. 25 211–222 Occurrence Handle10.1046/j.1365-3040.2002.00798.x Occurrence Handle1:CAS:528:DC%2BD38Xhslaktbc%3D Occurrence Handle11841664

    Article  CAS  PubMed  Google Scholar 

  • W.G. Spollen M.E. LeNoble T.D. Samuels N. Bernstein R.E. Sharp (2000) ArticleTitleAbscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production Plant Physiol. 122 967–976 Occurrence Handle10.1104/pp.122.3.967 Occurrence Handle1:CAS:528:DC%2BD3cXktFSqtLw%3D Occurrence Handle10712561

    Article  CAS  PubMed  Google Scholar 

  • R.G.D. Steel J.H. Torrie (1980) Principles and Procedures of Statistics. 2nd ed McGraw-Hill Book Company New York 633

    Google Scholar 

  • F. Tardieu J. Zhang N. Katerji O. Bethenod S. Palmer W.J. Davies (1992) ArticleTitleXylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying Plant Cell Environ. 15 193–197 Occurrence Handle1:CAS:528:DyaK38Xitlaiur8%3D

    CAS  Google Scholar 

  • F. Tardieu D. Gowing W.J. Davies (1993) ArticleTitleA model of stomatal control by both ABA concentration in the xylem sap and leaf water status: test of the model and of alternative mechanisms for droughtedABA-fed field-grown maize Plant Cell Environ. 16 413–420 Occurrence Handle1:CAS:528:DyaK3sXlsFKnur0%3D

    CAS  Google Scholar 

  • C.L. Trejo A.L. Clephan W.J. Davies (1995) ArticleTitleHow do stomata read abscisic acid signals? Plant Physiol. 109 803–811 Occurrence Handle1:CAS:528:DyaK2MXpsVOrs7s%3D Occurrence Handle12228634

    CAS  PubMed  Google Scholar 

  • R. Tuberosa M.C. Sanguineti P. Landi (1994) ArticleTitleAbscisic acid concentration in the leaf and xylem sap, leaf water potential, and stomatal conductance in drought-stressed maize Crop Sci. 34 1557–1563 Occurrence Handle1:CAS:528:DyaK2MXis1Smuro%3D

    CAS  Google Scholar 

  • R. Tuberosa S. Parentoni T.S. Kim M.C. Sanguineti R.L. Phillips (1998a) ArticleTitleMapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date Maize Genet. Coop. Newslett. 72 72–73

    Google Scholar 

  • R. Tuberosa M.C. Sanguineti P. Landi S. Salvi E. Casarini S. Conti (1998b) ArticleTitleRFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.) Theor. Appl. Genet. 97 744–755 Occurrence Handle10.1007/s001220050951 Occurrence Handle1:CAS:528:DyaK1cXotVahtro%3D

    Article  CAS  Google Scholar 

  • R. Tuberosa B.S. Gill S.A. Quarrie (2002a) ArticleTitleCereal genomics: ushering in a brave new world Plant Mol. Biol. 48 445–449 Occurrence Handle10.1023/A:1014818417927 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrsbs%3D

    Article  CAS  Google Scholar 

  • R. Tuberosa S. Salvi M.C. Sanguineti P. Landi M. Maccaferri S. Conti (2002b) ArticleTitleMapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize Ann. Bot. 89 941–963 Occurrence Handle10.1093/aob/mcf134 Occurrence Handle1:CAS:528:DC%2BD38XlsVeitb8%3D

    Article  CAS  Google Scholar 

  • R. Tuberosa M.C. Sanguineti P. Landi M.M. Giuliani S. Salvi S. Conti (2002c) ArticleTitleIdentification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes Plant Mol. Biol. 48 697–712 Occurrence Handle10.1023/A:1014897607670 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrt70%3D

    Article  CAS  Google Scholar 

  • R. Tuberosa S. Salvi M.C. Sanguineti M. Maccaferri S. Giuliani P. Landi (2003) ArticleTitleSearching for QTLs controlling root traits in maize: a critical appraisal Plant Soil 255 35–54 Occurrence Handle1:CAS:528:DC%2BD3sXotV2js7w%3D

    CAS  Google Scholar 

  • M.R. Tuinstra E.M. Grote P.B. Goldsbrough G. Ejeta (1997) ArticleTitleGenetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol. Breed. 3 439–448 Occurrence Handle10.1023/A:1009673126345 Occurrence Handle1:CAS:528:DyaK1cXit1Kit7c%3D

    Article  CAS  Google Scholar 

  • N.C. Turner (1997) ArticleTitleFurther progress in crop water relations Adv. Agron. 528 293–338

    Google Scholar 

  • R. Yadav B. Courtois N. Huang G. McLaren (1997) ArticleTitleMapping genes controlling root morphology and root distribution in a doubled-haploid population of rice Theor. Appl. Genet. 94 619–632 Occurrence Handle10.1007/s001220050459 Occurrence Handle1:CAS:528:DyaK2sXjslSqsLY%3D

    Article  CAS  Google Scholar 

  • J.A.D. Zeevaart R.A. Creelman (1988) ArticleTitleMetabolism and physiology of abscisic acid Ann. Rev. Plant Physiol. Plant Mol. Biol. 39 439–473 Occurrence Handle10.1146/annurev.pp.39.060188.002255 Occurrence Handle1:CAS:528:DyaL1cXltVOltrc%3D

    Article  CAS  Google Scholar 

  • J. Zhang W.J. Davies (1990) ArticleTitleDoes ABA in the xylem control the rate of leaf growth in soil dried maize and sunflower plants? J. Exp. Bot. 41 1125–1132 Occurrence Handle1:CAS:528:DyaK3cXlvVyhsLk%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Landi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, P., Sanguineti, M.C., Salvi, S. et al. Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Mol Breeding 15, 291–303 (2005). https://doi.org/10.1007/s11032-004-7604-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-7604-7

Keywords

Navigation