Skip to main content
Log in

The status of isocyanide-based multi-component reactions in Iran (2010–2018)

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Isocyanides as key intermediates and magic reactants have been widely applied in organic reactions for direct access to a broad spectrum of remarkable organic compounds. Although the history of these magical compounds dates back more than 100 years, it still has been drawing widespread attention of chemists who confirmed their versatility and effectiveness. Because of their wide spectrum of pharmacological, industrial and synthetic applications, many reactions with the utilization of isocyanides are reported in the literature. In this context, Iranian scientist played a significant role in the growth of isocyanides chemistry. The present review article covers literature from the period starting from 2010 onward and encompasses new synthetic routes and organic transformation involving isocyanides by Iranian researchers. During this period, a diverse range of isocyanide-based multi-component reactions (I-MCRs) has been reported such as a new modification of Ugi, post-Ugi, Passerini and Groebke–Blackburn–Bienayme condensation reactions, isocyanide-based [1 + 4] cycloaddition reactions, isocyanide-acetylene-based MCRs, isocyanide and Meldrum’s acid-based MCRs, several unexpected reactions besides green mediums and novel catalytic systems for the synthesis of diverse kinds of pharmaceutically and industrially remarkable heterocyclic and linear organic compounds. This review also emphasizes the neoteric applications of I-MCR for the synthesis of valuable peptide and pseudopeptide scaffolds, enzyme immobilization and functionalization of materials with tailorable properties that can play important roles in the plethora of applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110
Scheme 111
Scheme 112
Scheme 113
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118
Scheme 119
Scheme 120
Scheme 121
Scheme 122
Scheme 123

Similar content being viewed by others

References

  1. Lieke W (1859) Ueber das cyanallyl. Eur J Org Chem 112:316–321. https://doi.org/10.1002/jlac.18591120307

    Article  Google Scholar 

  2. Ugi I, Werner B, Dömling A (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53–66. https://doi.org/10.3390/80100053

    Article  CAS  PubMed Central  Google Scholar 

  3. Veiderma M (2007) Chemistry of the isocyanides and their multicomponent reactions, including their libraries-the initiatives of Ivar Ugi. In: Proceedings-estonian academy of sciences chemistry, Truekitud OU

  4. Nenajdenko V (2012) Isocyanide chemistry: applications in synthesis and material science. John, New York

    Book  Google Scholar 

  5. Dömling A (1998) Isocyanide based multi component reactions in combinatorial chemistry. Comb Chem High Throughput Screen 1:1–22

    PubMed  Google Scholar 

  6. Keating TA, Armstrong RW (1995) Mol Divers via a convertible isocyanide in the Ugi four-component condensation. J Am Chem Soc 117:7842–7843. https://doi.org/10.1021/ja00134a044

    Article  CAS  Google Scholar 

  7. Ruijter E, Scheffelaar R, Orru RV (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234–6246. https://doi.org/10.1002/anie.201006515

    Article  CAS  Google Scholar 

  8. Malatesta L (1969) Isocyanide complexes of metals. Wiley, New York

    Google Scholar 

  9. Singleton E, Oosthuizen HE (1983) Metal isocyanide complexes. Adv Organomet Chem 22:209–310. https://doi.org/10.1016/S0065-3055(08)60404-9

    Article  CAS  Google Scholar 

  10. Le HV, Ganem B (2014) Mild oxidation of tosylmethylisocyanide to tosylmethylisocyanate: utility in synthetic and medicinal chemistry. Tetrahedron Lett 55:2003–2005. https://doi.org/10.1016/j.tetlet.2014.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koopmanschap G, Ruijter E, Orru RV (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598. https://doi.org/10.3762/bjoc.10.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rotstein BH, Winternheimer DJ, Yin LM, Deber CM, Yudin AK (2012) Thioester-isocyanides: versatile reagents for the synthesis of cycle-tail peptides. Chem Commun 48:3775–3777. https://doi.org/10.1039/C2CC16027G

    Article  CAS  Google Scholar 

  13. Ridder B, Althuon D, Nesterov-Mueller A, Breitling F, Meier MA (2017) Peptide array functionalization via the Ugi four-component reaction. Chem Commun 53:5553–5556. https://doi.org/10.1039/C7CC01945A

    Article  CAS  Google Scholar 

  14. Gangloff N, Nahm D, Döring L, Kuckling D, Luxenhofer R (2015) Polymerization via the Ugi-reaction using aromatic monomers. J Polym Sci Part A: Polym Chem 53:1680–1686

    Article  CAS  Google Scholar 

  15. Jee J-A, Spagnuolo LA, Rudick JG (2012) Convergent synthesis of dendrimers via the Passerini three-component reaction. Org Lett 14:3292–3295. https://doi.org/10.1021/ol301263v

    Article  CAS  PubMed  Google Scholar 

  16. Koyama Y, Gudeangadi PG (2017) One-pot synthesis of alternating peptides exploiting a new polymerization technique based on Ugi’s 4CC reaction. Chem Commun 53:3846–3849. https://doi.org/10.1039/C6CC09379E

    Article  CAS  Google Scholar 

  17. Kreye O, Tóth T, Meier MA (2011) Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc 133:1790–1792. https://doi.org/10.1021/ja1113003

    Article  CAS  PubMed  Google Scholar 

  18. Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324–331. https://doi.org/10.1016/j.cbpa.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  19. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  20. Shaabani A, Maleki A, Rezayan AH, Sarvary A (2011) Recent progress of isocyanide-based multicomponent reactions in Iran. Mol Divers 15:41–68. https://doi.org/10.1007/s11030-010-9258-1

    Article  CAS  PubMed  Google Scholar 

  21. Van Berkel SS, Bögels BG, Wijdeven MA, Westermann B, Rutjes FP (2012) Recent advances in asymmetric isocyanide-based multicomponent reactions. Eur J Org Chem 2012:3543–3559. https://doi.org/10.1002/ejoc.201200030

    Article  CAS  Google Scholar 

  22. Qiu G, Ding Q, Wu J (2013) Recent advances in isocyanide insertion chemistry. Chem Soc Rev 42:5257–5269. https://doi.org/10.1039/C3CS35507A

    Article  CAS  PubMed  Google Scholar 

  23. Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY (2015) Metal-mediated and metal-catalyzed reactions of isocyanides. Chem Rev 115:2698–2779. https://doi.org/10.1021/cr500380d

    Article  CAS  PubMed  Google Scholar 

  24. Sadjadi S, Heravi MM, Nazari N (2016) Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 6:53203–53272. https://doi.org/10.1039/C6RA02143C

    Article  CAS  Google Scholar 

  25. Song B, Xu B (2017) Metal-catalyzed C-H functionalization involving isocyanides. Chem Soc Rev 46:1103–1123. https://doi.org/10.1039/C6CS00384B

    Article  CAS  PubMed  Google Scholar 

  26. El Kaïm L, Grimaud L (2010) Ugi-Smiles couplings: new entries to N-aryl carboxamide derivatives. Mol Divers 14:855–867. https://doi.org/10.1007/s11030-009-9175-3

    Article  CAS  PubMed  Google Scholar 

  27. Hebach C, Kazmaier U (2003) Via Ugi reactions to conformationally fixed cyclic peptides. Chem Commun. https://doi.org/10.1039/B210952B

    Article  Google Scholar 

  28. El Kaïm L, Grimaud L, Oble J (2005) Phenol Ugi–smiles systems: strategies for the multicomponent N-arylation of primary amines with isocyanides, aldehydes, and phenols. Angew Chem 117:8175–8178. https://doi.org/10.1002/ange.200502636

    Article  Google Scholar 

  29. Zarganes-Tzitzikas T, Domling A (2014) Modern multicomponent reactions for better drug syntheses. Org Chem Front 1:834–837. https://doi.org/10.1039/c4qo00088a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65:2153–2171. https://doi.org/10.1016/j.tet.2008.12.002

    Article  CAS  Google Scholar 

  31. Sinha MK, Khoury K, Herdtweck E, Dömling A (2013) Various cyclization scaffolds by a truly Ugi 4-CR. Org Biomol Chem 11:4792–4796. https://doi.org/10.1039/C3OB40523K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang B, Zhao Y, Wei Y, Fu C, Tao L (2015) The Ugi reaction in Polym Chem: syntheses, applications and perspectives. Polym Chem 6:8233–8239. https://doi.org/10.1039/c5py01398d

    Article  CAS  Google Scholar 

  33. Liao GP, Abdelraheem EM, Neochoritis CG, Kurpiewska K, Kalinowska-Tłuścik J, McGowan DC, Dömling A (2015) Versatile multicomponent reaction macrocycle synthesis using α-isocyano-ω-carboxylic acids. Org Lett 17:4980–4983. https://doi.org/10.1021/acs.orglett.5b02419

    Article  CAS  PubMed  Google Scholar 

  34. Tahoori F, Sheikhnejad R, Balalaie S, Sadjadi M (2013) Synthesis of novel peptides through Ugi-ligation and their anti-cancer activities. Amino Acids 45:975–981. https://doi.org/10.1007/s00726-013-1554-5

    Article  CAS  PubMed  Google Scholar 

  35. Ramezanpour S, Bigdeli Z, Alavijeh NS, Rominger F (2017) Application of saccharin as an acidic partner in the Ugi reaction for the one-pot synthesis of 3-iminosaccharins. Synlett 28:1214–1218. https://doi.org/10.1055/s-0036-1558962

    Article  CAS  Google Scholar 

  36. Shiri M, Zolfigol MA, Khazaei A, Faal-Rastegar T, Kruger HG (2014) Participation of ethyl 3-formylindole-2-carboxylate with the Ugi four-component condensation reaction. J Iran Chem Soc 11:85–90. https://doi.org/10.1007/s13738-013-0278-5

    Article  CAS  Google Scholar 

  37. Alavijeh NS, Ramezanpour S, Alavijeh MS, Balalaie S, Rominger F, Misra A, Bijanzadeh HR (2014) Synthesis and lipophilicity evaluation of some novel indole-containing pseudopeptides. Monatshefte Chem 2:349–356. https://doi.org/10.1007/s00706-013-1098-0

    Article  CAS  Google Scholar 

  38. Akbarzadeh R, Mirzaei P, Bazgir A (2010) A simple synthesis of ferrocenyl bis-amides by a Ugi four-component reaction. J Organomet Chem 695:2320–2324. https://doi.org/10.1016/j.jorganchem.2010.06.029

    Article  CAS  Google Scholar 

  39. Sharifzadeh ES, Shiraz NZ (2018) DFT studies on the diastereoselectivity of four-component Ugi reaction. J Theor Comput Chem 17:1850039. https://doi.org/10.1142/S0219633618500396

    Article  CAS  Google Scholar 

  40. Ghandi M, Zarezadeh N, Taheri A (2011) A novel isocyanide-based three-component synthesis of benzimidazo [1, 2-a][1, 4] diazepinones. Tetrahedron Lett 52:1228–1232. https://doi.org/10.1016/j.tetlet.2011.01.073

    Article  CAS  Google Scholar 

  41. Rasouli MA, Mahdavi M, Ranjbar PR, Saeedi M, Shafiee A, Foroumadi A (2012) A green one-pot synthesis of N-alkyl-2-(2-oxoazepan-1-yl)-2-arylacetamide derivatives via an Ugi four-center, three-component reaction in water. Tetrahedron Lett 53:7088–7092. https://doi.org/10.1016/j.tetlet.2012.10.075

    Article  CAS  Google Scholar 

  42. Rayatzadeh A, Saeedi M, Mahdavi M, Rezaei Z, Sabourian R, Mosslemin MH, Akbarzadeh T, Foroumadi A, Shafiee A (2015) Synthesis and evaluation of novel oxoisoindoline derivatives as acetylcholinesterase inhibitors. Monatshefte Chem 146:637–643. https://doi.org/10.1007/s00706-014-1334-2

    Article  CAS  Google Scholar 

  43. Zohreh N, Alizadeh A, Bijanzadeh HR, Zhu L-G (2010) Novel approach to 1, 5-benzodiazepine-2-ones containing peptoid backbone via one-pot diketene-based Ugi-4CR. J Comb Chem 12:497–502. https://doi.org/10.1021/cc100037v

    Article  CAS  PubMed  Google Scholar 

  44. Poor MA, Darehkordi A, Anary-Abbasinejad M, Mohammadi M (2018) Gabapentin-base synthesis and theoretical studies of biologically active compounds: N-cyclohexyl-3-oxo-2-(3-oxo-2-azaspiro [4.5] decan-2-yl)-3-arylpropanamides and N-(tert-butyl)-2-(3-oxo-2-azaspiro [4.5] decan-2-yl)-2-arylacetamide derivatives. J Mol Struct 1152:44–52. https://doi.org/10.1016/j.molstruc.2017.09.061

    Article  CAS  Google Scholar 

  45. Shu M, Mei H, Yang S, Liao L, Li Z (2009) Structural parameter characterization and bioactivity simulation based on peptide sequence. Mol Inform 28:27–35. https://doi.org/10.1002/qsar.200710169

    Article  CAS  Google Scholar 

  46. Halimehjani AZ, Ranjbari MA, Zanussi HP (2013) Synthesis of a new series of dithiocarbamate-linked peptidomimetics and their application in Ugi reactions. RSC Adv 3:22904–22908. https://doi.org/10.1039/C3RA44552F

    Article  Google Scholar 

  47. Halimehjani AZ, Sharifi M (2017) Synthesis of a novel category of Ugi adducts using succinic acid, succinic anhydride and maleic anhydride and their application in post-Ugi reactions for synthesis of functionalized piperazine 2,5-diones. Tetrahedron 73:5778–5783. https://doi.org/10.1016/j.tet.2017.08.028

    Article  CAS  Google Scholar 

  48. Mungalpara D, Kelm H, Valkonen A, Rissanen K, Keller S, Kubik S (2017) Oxoanion binding to a cyclic pseudopeptide containing 1, 4-disubstituted 1, 2, 3-triazole moieties. Org Biomol Chem 15:102–113. https://doi.org/10.1039/C6OB02172G

    Article  CAS  Google Scholar 

  49. Tomasini C, Luppi G, Monari M (2006) Oxazolidin-2-one-containing pseudopeptides that fold into β-bend ribbon spirals. J Am Chem Soc 128:2410–2420. https://doi.org/10.1021/ja056762h

    Article  CAS  PubMed  Google Scholar 

  50. Balboni G, Salvadori S, Guerrini R, Bianchi C, Santagada V, Calliendo G, Bryant SD, Lazarus LH (2000) Opioid pseudopeptides containing heteroaromatic or heteroaliphatic nuclei. Peptides 21:1663–1671. https://doi.org/10.1016/S0196-9781(00)00315-6

    Article  CAS  PubMed  Google Scholar 

  51. Shaabani A, Hooshmand SE (2018) Diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds via a one-pot sequential isocyanide-based six-component reactions in water using ultrasound irradiation. Ultrason Sonochem 40:84–90. https://doi.org/10.1016/j.ultsonch.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  52. Shaabani S, Shaabani A, Ng SW (2014) One-pot synthesis of coumarin-3-carboxamides containing a triazole ring via an isocyanide-based six-component reaction. ACS Comb Sci 16:176–183. https://doi.org/10.1021/co4001259

    Article  CAS  PubMed  Google Scholar 

  53. Shahvelayati AS, Esmaeeli Z (2012) Efficient synthesis of S-dipeptidothiouracil derivatives via a one-pot, five-component reaction under ionic liquid condition. J Sulfur Chem 33:319–325. https://doi.org/10.1080/17415993.2012.662982

    Article  CAS  Google Scholar 

  54. Mohammadi AA, Taheri S, Amini A, Ahdenov R (2018) Synthesis of some new triamide derivatives via Ugi five-component reaction in aqueous solution. Mol Divers 22:999–1006. https://doi.org/10.1007/s11030-018-9846-z

    Article  CAS  PubMed  Google Scholar 

  55. Benson FR (1947) The chemistry of the tetrazoles. Chem Rev 41:1–61. https://doi.org/10.1021/cr60128a001

    Article  CAS  PubMed  Google Scholar 

  56. Maleki A, Sarvary A (2015) Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv 5:60938–60955. https://doi.org/10.1039/C5RA11531K

    Article  CAS  Google Scholar 

  57. Ugi I, Steinbrückner C (1961) Isonitrile, II. Reaktion von isonitrilen mit carbonylverbindungen, aminen und stickstoffwasserstoffsäure. Eur J Inorg Chem 94:734–742. https://doi.org/10.1002/cber.19610940323

    Article  CAS  Google Scholar 

  58. Amanpour T, Mirzaei P, Bazgir A (2012) Isocyanide-based four-component synthesis of ferrocenyl 1, 5-disubstituted tetrazoles. Tetrahedron Lett 53:1421–1423. https://doi.org/10.1016/j.tetlet.2012.01.038

    Article  CAS  Google Scholar 

  59. Ramezanpour S, Balalaie S, Rominger F (2016) Stereoselective synthesis of tetrazolo-spiroquinazolinone derivatives through one-pot pseudo six-component reaction. Tetrahedron 72:6409–6414. https://doi.org/10.1016/j.tet.2016.08.046

    Article  CAS  Google Scholar 

  60. Kazemizadeh AR, Hajaliakbari N, Hajian R, Shajari N, Ramazani A (2012) Synthesis of 1, 5-disubstituted 1H-tetrazole derivatives via a three-component reaction of carbodiimides, isocyanides, and trimethylsilyl azide. Helv Chim Acta 95:594–597. https://doi.org/10.1002/hlca.201100327

    Article  CAS  Google Scholar 

  61. Shaabani A, Hezarkhani Z, Mofakham H, Ng SW (2013) Synthesis of highly regioselective bifunctional tricyclic tetrazole-1H-benzo [b][1, 4] diazepins. Synlett 24:1485–1492. https://doi.org/10.1055/s-0033-1338953

    Article  CAS  Google Scholar 

  62. Mofakham H, Shaabani A, Mousavifaraz S, Hajishaabanha F, Shaabani S, Ng SW (2012) A novel one-pot pseudo-five-component condensation reaction towards bifunctional diazepine-tetrazole containing compounds: synthesis of 1H-tetrazolyl-1H-1, 4-diazepine-2, 3-dicarbonitriles and 1H-tetrazolyl-benzo [b][1, 4] diazepines. Mol Divers 16:351–356. https://doi.org/10.1007/s11030-012-9371-4

    Article  CAS  PubMed  Google Scholar 

  63. Ghandi M, Salahi S, Taheri A, Abbasi A (2018) One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1, 2, 3, 4-tetrahydropyrrolo [1, 2-a] pyrazine derivatives via an Ugi-azide 4CR process. Mol Divers. https://doi.org/10.1007/s11030-017-9801-4

    Article  PubMed  Google Scholar 

  64. Shaabani A, Mofakham H, Hajishaabanha F, Mousavi Faraz S, Pedarpour Vajargahy M (2018) A novel strategy of Ugi-4CR/huisgen 1, 3-Dipolar synthesis of 1H-1, 2, 3-triazole-modified peptidoimetics. Iran J Chem Chem Eng 37:73–84

    CAS  Google Scholar 

  65. Bararjanian M, Balalaie S, Rominger F, Movassagh B, Bijanzadeh HR (2010) Six-component reactions for the stereoselective synthesis of 3-arylidene-2-oxindoles via sequential one-pot Ugi/Heck carbocyclization/Sonogashira/nucleophilic addition. J Org Chem 75:2806–2812. https://doi.org/10.1021/jo902713x

    Article  CAS  PubMed  Google Scholar 

  66. Maghari S, Ramezanpour S, Balalaie S, Darvish F, Rominger F, Bijanzadeh HR (2013) Synthesis of functionalized pseudopeptides through five-component sequential Ugi/nucleophilic reaction of N-substituted 2-alkynamides with hydrazides. J Org Chem 78:6450–6456. https://doi.org/10.1021/jo4003294

    Article  CAS  PubMed  Google Scholar 

  67. Ghabraie E, Balalaie S, Mehrparvar S, Rominger F (2014) Synthesis of functionalized β-lactams and pyrrolidine-2, 5-diones through a metal-free sequential Ugi-4CR/cyclization reaction. J Org Chem 79:7926–7934. https://doi.org/10.1021/jo5010422

    Article  CAS  PubMed  Google Scholar 

  68. Bararjanian M, Balalaie S, Rominger F, Movassagh B, Bijanzadeh HR (2011) Novel and efficient one-pot five-and six-component reactions for the stereoselective synthesis of highly functionalized enaminones and dithiocarbamates. Mol Divers 15:583–594. https://doi.org/10.1007/s11030-010-9286-x

    Article  CAS  PubMed  Google Scholar 

  69. Balalaie S, Kassaee MZ, Bijanzadeh HR, Darvish F, Bararjanian M, Jalaiyan F (2014) An efficient stereoselective synthesis of functionalized vinyl ethers. J Iran Chem Soc 11:1483–1492. https://doi.org/10.1007/s13738-014-0418-6

    Article  CAS  Google Scholar 

  70. Ghabraie E, Balalaie S (2014) Sequential Ugi four-component reaction (4-CR)/C-H activation using (diacetoxyiodo) benzene for the synthesis of 3-(Diphenylmethylidene)-2, 3-dihydro-1H-indol-2-ones. Helv Chim Acta 97:1555–1563. https://doi.org/10.1002/hlca.201400056

    Article  CAS  Google Scholar 

  71. Balalaie S, Shamakli M, Nikbakht A, Alavijeh NS, Rominger F, Rostamizadeh S, Bijanzadeh HR (2017) Direct access to isoxazolino and isoxazolo benzazepines from 2-((hydroxyimino)methyl)benzoic acid via a post-Ugi heteroannulation. Org Biomol Chem 15:5737–5742. https://doi.org/10.1039/C7OB01142C

    Article  CAS  PubMed  Google Scholar 

  72. Saeedi M, Mahdavi M, Foroumadi A, Shafiee A (2013) Synthesis of novel fused 4, 5-dihydro-1, 2, 3-triazolo [1, 5-a][1, 4] benzodiazepine derivatives via four-component Ugi–Smiles-type reaction. Tetrahedron 69:3506–3510. https://doi.org/10.1016/j.tet.2013.02.023

    Article  CAS  Google Scholar 

  73. Rasouli MA, Mahdavi M, Firoozpour L, Shafiee A, Foroumadi A (2014) Synthesis of novel indolo [2, 3-c] quinolinones via Ugi-4CR/palladium-catalyzed arylation. Tetrahedron 70:3931–3934. https://doi.org/10.1016/j.tet.2014.03.079

    Article  CAS  Google Scholar 

  74. Shiri M, Bozorgpour-Savadjani Z (2015) Highly selective base-catalyzed ring closing Ugi-adducts from the reaction of 2-formylindole, 2-bromoacetic acid, amines and isocyanides. J Iran Chem Soc 12:389–396. https://doi.org/10.1007/s13738-014-0495-6

    Article  CAS  Google Scholar 

  75. Shiri M, Mirpour-Marzoni SZ, Bozorgpour-Savadjani Z, Soleymanifard B, Kruger HG (2014) Base-catalyzed cyclization of Ugi-adducts to substituted indolyl based γ-lactams. Monatshefte Chem 145:1947–1952. https://doi.org/10.1007/s00706-014-1271-0

    Article  CAS  Google Scholar 

  76. Akbarzadeh R, Amanpour T, Bazgir A (2014) Synthesis of 3-oxo-1, 4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 70:8142–8147. https://doi.org/10.1016/j.tet.2014.07.102

    Article  CAS  Google Scholar 

  77. Ghandi M, Ahangaran MM, Abbasi A (2017) Sequential one-pot five-component synthesis of tetrazole-based spirotetrahydro-β-carbolines. J Iran Chem Soc 14:1131–1137. https://doi.org/10.1007/s13738-017-1063-7

    Article  CAS  Google Scholar 

  78. Balalaie S, Mirzaie S, Nikbakht A, Hamdan F, Rominger F, Navari R, Bijanzadeh HR (2017) Indium-catalyzed intramolecular hydroamidation of alkynes: an exo-dig cyclization for the synthesis of pyranoquinolines through post-transformational reaction. Org Lett 19:6124–6127. https://doi.org/10.1021/acs.orglett.7b02603

    Article  CAS  PubMed  Google Scholar 

  79. Balalaie S, Ramezani Kejani R, Ghabraie E, Darvish F, Rominger F, Hamdan F, Bijanzadeh HR (2017) Diastereoselective synthesis of functionalized diketopiperazines through post-transformational reactions. J Org Chem 82:12141–12152. https://doi.org/10.1021/acs.joc.7b01855

    Article  CAS  PubMed  Google Scholar 

  80. Staudinger H, Meyer J (1919) Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv Chim Acta 2:635–646. https://doi.org/10.1002/hlca.19190020164

    Article  CAS  Google Scholar 

  81. Palacios F, Aparicio D, Rubiales G, Alonso C, de los Santos JM (2009) Synthetic applications of intramolecular aza-Wittig reaction for the preparation of heterocyclic compounds. Curr Org Chem 13:810–828. https://doi.org/10.2174/138527209788167196

    Article  CAS  Google Scholar 

  82. Ramazani A, Rezaei A (2010) Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives by a Ugi-4CR/aza-wittig sequence. Org Lett 12:2852–2855. https://doi.org/10.1021/ol100931q

    Article  CAS  PubMed  Google Scholar 

  83. Ramazani A, Shajari N, Mahyari A, Ahmadi Y (2011) A novel four-component reaction for the synthesis of disubstituted 1, 3, 4-oxadiazole derivatives. Mol Divers 15:521–527. https://doi.org/10.1007/s11030-010-9275-0

    Article  CAS  PubMed  Google Scholar 

  84. Ramazani A, Ahmadi Y, Malekzadeh AM, Rezaei A (2011) A one-pot efficient four-component reaction for the synthesis of 2-(arylamino)-2-(5-aryl-1, 3, 4-oxadiazol-2-yl) propyl benzoate (or acetate) derivatives. Heteroatom Chem 22:692–698. https://doi.org/10.1002/hc.20735

    Article  CAS  Google Scholar 

  85. Ramazani A, Abdian B, Nasrabadi FZ, Rouhani M (2013) The reaction of N-isocyaniminotriphenylphosphorane with biacetyl in the presence of (E)-cinnamic acids: synthesis of fully substituted 1, 3, 4-oxadiazole derivatives via intramolecular aza-wittig reactions of in situ generated iminophosphoranes. Phosphorus Sulfur Silicon Relat Elem 188:642–648. https://doi.org/10.1080/10426507.2012.700351

    Article  CAS  Google Scholar 

  86. Tahoori F, Balalaie S, Sheikhnejad R, Sadjadi M, Boloori P (2014) Design and synthesis of anti-cancer cyclopeptides containing triazole skeleton. Amino Acids 46:1033–1046. https://doi.org/10.1007/s00726-013-1663-1

    Article  CAS  PubMed  Google Scholar 

  87. Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi J (2015) Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Adv 5:32698–32705. https://doi.org/10.1039/C5RA03299G

    Article  CAS  Google Scholar 

  88. Rezaei A, Akhavan O, Hashemi E, Shamsara M (2016) Ugi four component assembly process: an efficient approach for one-pot multi-functionalization of nano graphene oxide in water and their application in Lipase immobilization. Chem Mater 28:3004–3016. https://doi.org/10.1021/acs.chemmater.6b00099

    Article  CAS  Google Scholar 

  89. Mohammadi M, Ashjari M, Garmroodi M, Yousefi M, Karkhane AA (2016) The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Adv 6:72275–72285. https://doi.org/10.1039/C6RA14142K

    Article  CAS  Google Scholar 

  90. Rezaei A, Akhavan O, Hashemi E, Shamsara M (2016) Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. Biomacromol 17:2963–2971. https://doi.org/10.1021/acs.biomac.6b00767

    Article  CAS  Google Scholar 

  91. Adibi-Motlagh B, Lotfi AS, Rezaei A (2017) Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite. Mater Sci Eng C 82:323–329. https://doi.org/10.1016/j.msec.2017.05.039

    Article  CAS  Google Scholar 

  92. Shaabani A, Afshari R (2017) Synthesis of carboxamide-functionalized multiwall carbon nanotubes via Ugi multicomponent reaction: water-dispersible peptidomimetic nanohybrid as controlled drug delivery vehicle. ChemistrySelect 2:5218–5225. https://doi.org/10.1002/slct.201700615

    Article  CAS  Google Scholar 

  93. Shaabani A, Afshari R (2017) Magnetic Ugi-functionalized graphene oxide complexed with copper nanoparticles: efficient catalyst toward ullman coupling reaction in deep eutectic solvents. J Colloid Interface Sci 510:384–394. https://doi.org/10.1016/j.jcis.2017.09.089

    Article  CAS  PubMed  Google Scholar 

  94. Rajab Asadi F, Hamzavi SF, Shahverdizadeh GH, Ilkhchi MG, Hosseinzadeh-Khanmiri R (2018) Dipeptide-functionalized MIL-101 (Fe) as efficient material for ibuprofen delivery. Appl Organomet Chem 32:e4552. https://doi.org/10.1002/aoc.4552

    Article  CAS  Google Scholar 

  95. Passerini M, Simone L (1921) Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz Chim Ital 51:126–129

    CAS  Google Scholar 

  96. Wang SX, Wang MX, Wang DX, Zhu J (2008) Catalytic enantioselective Passerini three-component reaction. Angew Chem Int Ed 47:388–391. https://doi.org/10.1002/ange.200704315

    Article  CAS  Google Scholar 

  97. Esmaeili AA, Ghalandarabad SA, Jannati S (2013) A novel and efficient synthesis of 3, 3-disubstituted indol-2-ones via Passerini three-component reactions in the presence of 4Å molecular sieves. Tetrahedron Lett 54:406–408. https://doi.org/10.1016/j.tetlet.2012.11.025

    Article  CAS  Google Scholar 

  98. Teimouri MB (2012) One-pot synthesis of α-acyloxycarboxamidobarbiturates from alloxans, carboxylic acids, and isocyanides. J Chem Res 36:432–436. https://doi.org/10.3184/174751912X13379442777234

    Article  CAS  Google Scholar 

  99. Karimi AR, Rajabi-Khorrami A, Alimohammadi Z, Mohammadi AA, Mohammadizadeh MR (2006) Three-component synthesis of ninhydrin derived α-acyloxycarboxamides. Monatshefte Chem 137:1079–1082. https://doi.org/10.1007/s00706-006-0501-5

    Article  CAS  Google Scholar 

  100. Teimouri MB, Mashayekhi F, Alishaei E (2016) Synthesis of 2-(3-chromonyl)-2-acyloxycarboxamides via multicomponent reactions of isocyanides. J Iran Chem Soc 13:583–590. https://doi.org/10.1007/s13738-015-0769-7

    Article  CAS  Google Scholar 

  101. Vessally E, Ramazani A, Yaaghubi E (2011) Green synthesis and characterization of novel α-acyloxycarboxamides through three-component reaction between pyridine carbaldehydes, cyclohexyl isocyanide, and benzoic acid derivatives. Monatshefte Chem 142:1143–1147. https://doi.org/10.1007/s00706-011-0536-0

    Article  CAS  Google Scholar 

  102. Taran J, Ramazani A, Woo Joo S, Ślepokura K, Lis T (2014) Synthesis of novel α-(Acyloxy)-α-(quinolin-4-yl) acetamides by a three-component reaction between an isocyanide, Quinoline-4-carbaldehyde, and arenecarboxylic acids. Helv Chim Acta 97:1088–1096. https://doi.org/10.1002/hlca.201300378

    Article  CAS  Google Scholar 

  103. Yavari I, Zahedi N, Baoosi L (2016) A one-pot synthesis of functionalized 4, 5-bis (phenylimino)-1, 3-thiazolidine-2-thiones from primary amines, CS2 and N, N′-diphenyloxalimidoyl dichloride. J Iran Chem Soc 13:1847–1851. https://doi.org/10.1007/s13738-016-0901-3

    Article  CAS  Google Scholar 

  104. Baharfar R, Azimi R, Barzegar S, Mohseni M (2015) Efficient synthesis of rhodanine-based amides via Passerini reaction using tetramethylguanidine-functionalized silica nanoparticles as reusable catalyst. J Braz Chem Soc 26:1396–1404. https://doi.org/10.5935/0103-5053.20150108

    Article  CAS  Google Scholar 

  105. Rouhani M, Ramazani A, Joo SW (2015) Ultrasonics in isocyanide-based multicomponent reactions: a new, efficient and fast method for the synthesis of fully substituted 1, 3, 4-oxadiazole derivatives under ultrasound irradiation. Ultrason Sonochem 22:391–396. https://doi.org/10.1016/j.ultsonch.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  106. Shaabani A, Afshari R, Hooshmand SE (2016) Passerini three-component cascade reactions in deep eutectic solvent: an environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res Chem Intermed 42:5607–5616. https://doi.org/10.1007/s11164-015-2390-x

    Article  CAS  Google Scholar 

  107. Shaabani A, Hooshmand SE, Tabatabaei AT (2016) Synthesis of fully substituted naphthyridines: a novel domino four-component reaction in a deep eutectic solvent system based on choline chloride/urea. Tetrahedron Lett 57:351–353. https://doi.org/10.1016/j.tetlet.2015.12.017

    Article  CAS  Google Scholar 

  108. Shaabani A, Hooshmand SE, Nazeri MT, Afshari R, Ghasemi S (2016) Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett 57:3727–3730. https://doi.org/10.1016/j.tetlet.2016.07.005

    Article  CAS  Google Scholar 

  109. Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB, Shankarling GS (2013) Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason Sonochem 20:287–293. https://doi.org/10.1016/j.ultsonch.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  110. Tiecco M, Germani R, Cardellini F (2016) Carbon–carbon bond formation in acid deep eutectic solvent: chalcones synthesis via Claisen–Schmidt reaction. RSC Adv 6:43740–43747. https://doi.org/10.1039/C6RA04721A

    Article  CAS  Google Scholar 

  111. Mohammadi M, Gandomkar S, Habibi Z, Yousefi M (2016) One pot three-component reaction for covalent immobilization of enzymes: application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv 6:52838–52849. https://doi.org/10.1039/C6RA11284F

    Article  CAS  Google Scholar 

  112. Salami F, Habibi Z, Yousefi M, Mohammadi M (2018) Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. Int J Biol Macromol 120:144–151. https://doi.org/10.1016/j.ijbiomac.2018.08.077

    Article  CAS  PubMed  Google Scholar 

  113. Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo [1, 2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998:661–663. https://doi.org/10.1055/s-1998-1721

    Article  Google Scholar 

  114. Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo [1, 2-a] pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39:3635–3638. https://doi.org/10.1016/S0040-4039(98)00653-4

    Article  CAS  Google Scholar 

  115. Bienayme H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37:2234–2237. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16%3c2234:AID-ANIE2234%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  116. Devi N, Rawal RK, Singh V (2015) Diversity-oriented synthesis of fused-imidazole derivatives via Groebke–Blackburn–Bienayme reaction: a review. Tetrahedron 71:183–232. https://doi.org/10.1016/j.tet.2014.10.032

    Article  CAS  Google Scholar 

  117. Bagdi AK, Santra S, Monir K, Hajra A (2015) Synthesis of imidazo [1, 2-a] pyridines: a decade update. Chem Commun 51:1555–1575. https://doi.org/10.1039/C4CC08495K

    Article  CAS  Google Scholar 

  118. Shaaban S, Abdel-Wahab BF (2016) Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery. Mol Divers 20:233–254. https://doi.org/10.1007/s11030-015-9602-6

    Article  CAS  PubMed  Google Scholar 

  119. Shaabani A, Nosrati H, Seyyedhamzeh M (2015) Cellulose@Fe2O3 nanoparticle composites: magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1, 2-a] pyridines. Res Chem Intermed 41:3719–3727. https://doi.org/10.1007/s11164-013-1484-6

    Article  CAS  Google Scholar 

  120. Jafarzadeh M, Soleimani E, Sepahvand H, Adnan R (2015) Synthesis and characterization of fluconazole-functionalized magnetic nanoparticles as a catalyst for the synthesis of 3-aryl and 3-amino-imidazo [1, 2-a] pyridines. RSC Adv 5:42744–42753. https://doi.org/10.1039/C5RA05246G

    Article  CAS  Google Scholar 

  121. Rostamnia S, Hassankhani A (2013) RuCl 3-catalyzed solvent-free Ugi-type Groebke–Blackburn synthesis of aminoimidazole heterocycles. RSC Adv 3:18626–18629. https://doi.org/10.1039/C3RA42752H

    Article  CAS  Google Scholar 

  122. Shahrisa A, Esmati S (2013) Three novel sequential reactions for the facile synthesis of a library of bisheterocycles possessing the 3-aminoimidazo [1, 2-a] pyridine core catalyzed by bismuth (III) chloride. Synlett 24:595–602. https://doi.org/10.1055/s-0032-1318221

    Article  CAS  Google Scholar 

  123. Shaabani A, Hooshmand SE (2016) Choline chloride/urea as a deep eutectic solvent/organocatalyst promoted three-component synthesis of 3-aminoimidazo-fused heterocycles via Groebke–Blackburn–Bienayme process. Tetrahedron Lett 57:310–313. https://doi.org/10.1016/j.tetlet.2015.12.014

    Article  CAS  Google Scholar 

  124. Maleki A, Javanshir S, Naimabadi M (2014) Facile synthesis of imidazo [1, 2-a] pyridines via a one-pot three-component reaction under solvent-free mechanochemical ball-milling conditions. RSC Adv 4:30229–30232. https://doi.org/10.1039/C3RA43221A

    Article  CAS  Google Scholar 

  125. Mouradzadegun A, Ma’mani L, Mahdavi M, Rashid Z, Shafiee A, Foroumadi A, Dianat S (2015) Sulfamic acid-functionalized hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles as a magnetically recoverable catalyst for synthesis of N-fused imidazole-quinoline conjugates under solvent-free conditions. RSC Adv 5:83530–83537. https://doi.org/10.1039/C5RA12307K

    Article  CAS  Google Scholar 

  126. Bakherad M, Keivanloo A, Siavashi M, Omidian M (2014) Three-component synthesis of imidazo [1, 2-c] pyrimidines using silica sulfuric acid (SSA). Chin Chem Lett 25:149–151. https://doi.org/10.1016/j.cclet.2013.10.013

    Article  CAS  Google Scholar 

  127. Keshipour S, Shaabani A, Shojaei S, Nosrati H, Ng SW (2015) A novel one-pot isocyanide-based three-component reaction: synthesis of highly functionalized imidazo-chromen-4-ones. J Iran Chem Soc 12:1655–1663. https://doi.org/10.1007/s13738-015-0640-x

    Article  CAS  Google Scholar 

  128. Akbarzadeh R, Shakibaei GI, Bazgir A (2010) An efficient synthesis of ferrocenyl imidazo [1, 2-a] pyridines. Monatshefte Chem 141:1077–1081. https://doi.org/10.1007/s00706-010-0372-7

    Article  CAS  Google Scholar 

  129. Rahmati A, Moazzam A, Khalesi Z (2014) A one-pot four-component synthesis of N-arylidene-2-aryl-imidazo [1, 2-a] azin-3-amines. Tetrahedron Lett 55:3840–3843. https://doi.org/10.1016/j.tetlet.2014.03.098

    Article  CAS  Google Scholar 

  130. Rahmati A, Eskandari-Vashareh M, Alizadeh-Kouzehrash M (2013) Synthesis of 3-(benzylideneamino)-2-phenyl-5H-imidazo [1, 2-b] pyrazole-7-carbonitriles via a four-component condensation reaction. Tetrahedron 69:4199–4204. https://doi.org/10.1016/j.tet.2013.03.103

    Article  CAS  Google Scholar 

  131. Akbarzadeh T, Ebrahimi A, Saeedi M, Mahdavi M, Foroumadi A, Shafiee A (2014) Synthesis of novel 5-phenylimidazo [1, 2-c] quinazolin-3-amine derivatives via Groebke–Blackburn–Bienaymé multicomponent reaction. Monatshefte Chem 145:1483–1487. https://doi.org/10.1007/s00706-014-1204-y

    Article  CAS  Google Scholar 

  132. Akbarzadeh T, Noushini S, Taban S, Mahdavi M, Khoshneviszadeh M, Saeedi M, Emami S, Eghtedari M, Sarrafi Y, Khoshneviszadeh M (2015) Synthesis and cytotoxic activity of novel poly-substituted imidazo [2, 1-c][1, 2, 4] triazin-6-amines. Mol Divers 19:273–281. https://doi.org/10.1007/s11030-015-9566-6

    Article  CAS  PubMed  Google Scholar 

  133. Mahdavi M, Asadi M, Saeedi M, Ebrahimi M, Rasouli MA, Ranjbar PR, Foroumadi A, Shafiee A (2012) One-pot, four-component synthesis of novel imidazo [2, 1-b] thiazol-5-amine derivatives. Synthesis 44:3649–3654. https://doi.org/10.1055/s-0032-1317515

    Article  CAS  Google Scholar 

  134. Allahabadi E, Ebrahimi S, Soheilizad M, Khoshneviszadeh M, Mahdavi M (2017) Copper-catalyzed four-component synthesis of imidazo[1,2-a]pyridines via sequential reductive amination, condensation, and cyclization. Tetrahedron Lett 58:121–124. https://doi.org/10.1016/j.tetlet.2016.11.081

    Article  CAS  Google Scholar 

  135. Neochoritis CG, Zarganes-Tzitzikas T, Stephanidou-Stephanatou J (2014) Dimethyl acetylenedicarboxylate: a versatile tool in organic synthesis. Synthesis 46:537–585. https://doi.org/10.1055/s-0033-1340615

    Article  CAS  Google Scholar 

  136. Winterfeldt E (1967) Additions to the activated CC triple bond. Angew Chem Int Ed 6:423–434. https://doi.org/10.1002/anie.196704231

    Article  CAS  Google Scholar 

  137. Oakes TR, David HG, Nagel FJ (1969) Small ring systems from isocyanides. I. Reaction of isocyanides with hexafluorobutyne-2. J Am Chem Soc 91:4761–4765. https://doi.org/10.1021/ja01045a030

    Article  CAS  Google Scholar 

  138. Yavari I, Davar-Panah M, Heydari M, Najafian K, Zonouzi A (1996) A facile route to highly functionalized ketenimines. Monatshefte Chem 127:963–966. https://doi.org/10.1007/BF00807036

    Article  CAS  Google Scholar 

  139. Nair V, Vinod A (2000) The reaction of cyclohexyl isocyanide and dimethyl acetylenedicarboxylate with aldehydes: a novel synthesis of 2-aminofuran derivatives. Chem Commun. https://doi.org/10.1039/B001698P

    Article  Google Scholar 

  140. Nair V, Rajesh C, Vinod A, Bindu S, Sreekanth A, Mathen J, Balagopal L (2003) Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res 36:899–907. https://doi.org/10.1021/ar020258p

    Article  CAS  PubMed  Google Scholar 

  141. Shaabani A, Sarvary A, Ghasemi S, Rezayan AH, Ghadari R, Ng SW (2011) An environmentally benign approach for the synthesis of bifunctional sulfonamide-amide compounds via isocyanide-based multicomponent reactions. Green Chem 13:582–585. https://doi.org/10.1039/C0GC00442A

    Article  CAS  Google Scholar 

  142. Asghari S, Iravani F (2012) One-pot, three-component synthesis of dialkyl 4-(alkylamino)-7-alkoxy-5-oxo-1-pyridine-2-yl-1, 5-dihy drofuro [3, 4-b] pyridine-2, 3-dicarboxylate. Acta Chim Slov 59:692–696

    CAS  PubMed  Google Scholar 

  143. Yavari I, Ghanbari MM, Azizian J, Sheikholeslami F (2011) A one-pot synthesis of functionalised 1-azadienes containing 2-thioxoimidazolidin-4-ones. J Chem Res 35:87–88. https://doi.org/10.3184/174751911X12964930076520

    Article  CAS  Google Scholar 

  144. Khandan-Barani K, Maghsoodlou MT, Hassanabadi A, Hosseini-Tabatabaei MR, Saffari J, Kangani M (2015) Synthesis of maleate derivatives in isocyanide-base MCRs: reaction of 2-mercaptobenzoxazole with alkyl isocyanides and dialkyl acetylenedicarboxylates. Res Chem Intermed 41:3011–3016. https://doi.org/10.1007/s11164-013-1409-4

    Article  CAS  Google Scholar 

  145. Amiri S, Mohtat B, Djahaniani H (2016) A one-pot isocyanide-based three-component reaction: synthesis of functionalized keteneimines from 2-hydroxy-benzimidazole. Afinidad 73:156–159

    CAS  Google Scholar 

  146. Vojdani Z, Mohebat R (2015) Facile and efficient one-pot synthesis of highly functionalised 1, 2, 3, 5-tetrahydroimidazo [1, 2-a] pyrimidines. J Chem Res 39:203–205. https://doi.org/10.3184/174751915X14267781816171

    Article  CAS  Google Scholar 

  147. Yadollahzadeh K, Azizian J, Sanaeishoar H (2015) One-pot synthesis of functionalized pyrimido [2, 1-B][1, 3] thiazin-6-ones via a multicomponent reaction. Phosphorus Sulfur Silicon Relat Elem 190:2023–2030. https://doi.org/10.1080/10426507.2015.1050015

    Article  CAS  Google Scholar 

  148. Sajadikhah SS, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM (2011) One-pot three-component reaction for synthesis of highly substituted pyrazolo [1, 2-a][1, 2, 4] triazole derivatives. Lett Org Chem 8:743–748. https://doi.org/10.2174/157017811799304188

    Article  CAS  Google Scholar 

  149. Mostofi F, Mohebat R (2016) Efficient synthesis of novel polyfunctionalized pyrazole derivatives via isocyanide-based three-component reaction. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2016.1200101

    Article  Google Scholar 

  150. Anary-Abbasinejad M, Shams N, Heidari M (2012) One-pot synthesis of highly functionalised 1H-pyrazoles from arylcarbohydrazides, cyclohexyl isocyanide, and acetylene diesters. Arkivoc 9:13–20. https://doi.org/10.3998/ark.5550190.0013.902

    Article  Google Scholar 

  151. Esmaeili AA, Zangouei M, Fakhari AR, Habibi A (2012) An efficient regioselective synthesis of highly functionalized 3-oxo-2, 3-dihydro-5H-thiazolo [3, 2-a] pyrimidines via an isocyanide-based three-component reaction. Tetrahedron Lett 53:1351–1353. https://doi.org/10.1016/j.tetlet.2012.01.005

    Article  CAS  Google Scholar 

  152. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5, 6, 7, 8-tetrahydro-4H-chromenes. Eur J Med Chem 44:3805–3809. https://doi.org/10.1016/j.ejmech.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  153. Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520. https://doi.org/10.1016/0223-5234(93)90020-F

    Article  CAS  Google Scholar 

  154. Martínez-Grau A, Marco J (1997) Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran [2, 3-b] quinoline, new tacrine analogues. Bioorg Med Chem Lett 7:3165–3170. https://doi.org/10.1016/S0960-894X(97)10165-2

    Article  Google Scholar 

  155. Kumar RS, Ramar A, Perumal S, Almansour AI, Arumugam N, Ali MA (2013) Three-component synthesis and 1, 3-dipolar cycloaddition of highly functionalized pyrans with nitrile oxides: easy access to 1, 2, 4-oxadiazoles. Synth Commun 43:2763–2772. https://doi.org/10.1080/00397911.2012.740647

    Article  CAS  Google Scholar 

  156. Pei CK, Jiang Y, Wei Y, Shi M (2012) Enantioselective synthesis of highly functionalized phosphonate-substituted pyrans or dihydropyrans through asymmetric [4 + 2] cycloaddition of β, γ-unsaturated α-ketophosphonates with allenic esters. Angew Chem Int Ed 51:11328–11332. https://doi.org/10.1002/anie.201206958

    Article  CAS  Google Scholar 

  157. Teimouri MB, Mansouri F (2010) One-pot three-component access to pyranocyclopentendiones. J Chem Res 34:330–332. https://doi.org/10.3184/030823410X12753056300098

    Article  CAS  Google Scholar 

  158. Akbarzadeh R, Amanpour T, Mirzaei P, Bazgir A (2011) Isocyanide-based three-component synthesis of pyrano-pyrido-quinoxalines. Helv Chim Acta 94:1527–1532. https://doi.org/10.1002/hlca.201100019

    Article  CAS  Google Scholar 

  159. Esmaeili AA, Hosseinabadi R, Habibi A (2010) An efficient synthesis of highly functionalized 4H-Pyrano [3, 2-d] isoxazoles via isocyanide-based three-component reaction. Synlett 2010:1477–1480. https://doi.org/10.1055/s-0029-1220072

    Article  CAS  Google Scholar 

  160. Esmaeili AA, Salehan F, Habibi A, Fakhari AR (2016) Efficient synthesis of novel pyrano [2, 3-d] pyrido [1, 2-a] pyrimidine derivatives via isocyanide-based three-component reactions. Tetrahedron Lett 57:100–102. https://doi.org/10.1016/j.tetlet.2015.11.073

    Article  CAS  Google Scholar 

  161. Asghari S, Ramezani S (2014) An efficient three-component synthesis of pyranoquinoline derivatives. J Heterocycl Chem 51:233–236. https://doi.org/10.1002/jhet.1614

    Article  CAS  Google Scholar 

  162. Bazgir A, Astaraki AM (2012) Synthesis of benzopyranophenazines via isocyanide-based three-component reactions. J chem 9:2315–2321. https://doi.org/10.1155/2012/149457

    Article  CAS  Google Scholar 

  163. Asghari S, Qandalee M (2010) Three-component, one-pot synthesis of new functionalized pyrrolines. Synth Commun 40:2172–2177. https://doi.org/10.1080/00397910903219583

    Article  CAS  Google Scholar 

  164. Baharfar R, Vahdat SM, Ahmadian M, Taghizadeh MJ (2010) An efficient multicomponent transformation of alkyl isocyanides, dialkyl acetylenedicarboxylates, and 2, 4-dihydroxybenzophenones or 2, 4-dihydroxyacetophenones into 2-amino-4H-chromene derivatives. Monatshefte Chem 141:213–218. https://doi.org/10.1007/s00706-009-0226-3

    Article  CAS  Google Scholar 

  165. Rostami-Charati F, Hossaini Z, Khalilzadeh MA (2012) Novel isocyanide-based three-component synthesis of substituted 9Hfuro [2, 3-f] chromene-8, 9-dicarboxylates in water. Comb Chem High Throughput Screen 15:433–437. https://doi.org/10.2174/138620712800194495

    Article  CAS  PubMed  Google Scholar 

  166. Mohtat B, Djahaniani H, Yavari I, Dehbalaei MG, Jam SA (2011) Synthesis of 4H-chromene derivatives by reaction between alkyl isocyanides and dialkyl acetylenedicarboxylate in the presence of 6-hydroxyquinoline. Chin Chem Lett 22:771–773. https://doi.org/10.1016/j.cclet.2011.01.005

    Article  CAS  Google Scholar 

  167. Azizian J, Ramazani A, Haji M (2011) Synthesis of Dialkyl 2-(Alkylamino)-4, 9-dihydro-9-oxocyclohepta [b] pyran-3, 4-dicarboxylates. Helv Chim Acta 94:371–375. https://doi.org/10.1002/hlca.201000222

    Article  CAS  Google Scholar 

  168. Bayat M, Imanieh H, Shiraz NZ, Qavidel MS (2010) One-pot, three-component reaction of isocyanides, dialkyl acetylenedicarboxylates, and non-cyclic anhydrides: synthesis of 2, 5-diaminofuran derivatives and dialkyl (E)-2-[(N-acyl-N-alkylamino) carbonyl]-2-butenedioates. Monatshefte Chem 141:333–338. https://doi.org/10.1007/s00706-010-0257-9

    Article  CAS  Google Scholar 

  169. Adib M, Sheikhi E, Kavoosi A, Bijanzadeh HR (2010) Synthesis of 2-(alkylamino)-5-{alkyl [(2-oxo-2H-chromen-3-yl) carbonyl] amino}-3, 4-furandicarboxylates using a multi-component reaction in water. Tetrahedron 66:9263–9269. https://doi.org/10.1016/j.tet.2010.09.032

    Article  CAS  Google Scholar 

  170. Baharfar R, Asghari S, Rassi S, Mohseni M (2015) Synthesis and evaluation of novel isatin and 5-isatinylidenerhodanine-based furan derivatives as antibacterial agents. Res Chem Intermed 41:6975–6984. https://doi.org/10.1007/s11164-014-1792-5

    Article  CAS  Google Scholar 

  171. Baharfar R, Baghbanian SM (2012) Synthesis of novel uracil based 2, 5-diaminofurans using multi-component reactions. Chin Chem Lett 23:677–680. https://doi.org/10.1016/j.cclet.2012.04.011

    Article  CAS  Google Scholar 

  172. Ardakani LS, Mosslemin MH, Sadeghi B (2015) Three-component reaction of alkyl isocyanide, acetylenic diesters and 5-hydroxy-5-arylpyrimidine-2, 4, 6 (1H, 3H, 5H)-trione. J Chem Res 39:467–469. https://doi.org/10.3184/174751915X14381554915509

    Article  CAS  Google Scholar 

  173. Sarvary A, Shaabani S, Ghanji N, Shaabani A (2015) Three-component reaction of isocyanide with dialkyl acetylenedicarboxylate and alkyl mercaptan: preparation of new derivatives of stable ketenimines. J Sulfur Chem 36:117–123. https://doi.org/10.1080/17415993.2014.978330

    Article  CAS  Google Scholar 

  174. Zakarianezhad M, Makiabadi B, Habibi-Khorassani SM, Shool M, Eslamlou M (2018) Theoretical study on mechanism of reaction between tert-butyl isocyanide and dimethyl acetylenedicarboxylate in presence of ethanethiol or thiophenol. Res Chem Intermed 44:2653–2665. https://doi.org/10.1007/s11164-018-3252-0

    Article  CAS  Google Scholar 

  175. Peterson LA (2012) Reactive metabolites in the biotransformation of molecules containing a furan ring. Chem Res Toxicol 26:6–25. https://doi.org/10.1021/tx3003824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Carter NB, Nadany AE, Sweeney JB (2002) Recent developments in the synthesis of furan-2 (5 H)-ones. J Chem Soc Perkin 1:2324–2342. https://doi.org/10.1039/B007664N

    Article  Google Scholar 

  177. Moran WJ, Rodríguez A (2012) Metal-catalyzed furan synthesis. A review. Org Prep Proced Int 44:103–130. https://doi.org/10.1080/00304948.2012.657558

    Article  CAS  Google Scholar 

  178. Ghandi M, Zarezadeh N (2013) Three-component one-pot synthesis of quinoline–furan conjugates from acetylenedicarboxylate, isocyanide, and 2-chloroquinoline-3-carbaldehyde. Tetrahedron 69:8668–8674. https://doi.org/10.1016/j.tet.2013.08.009

    Article  CAS  Google Scholar 

  179. Qandalee M, Mokhtary M, Asghari S, Mehrzadi M (2012) Synthesis of polyfunctionalized amino furans with long conjugated aromatic systems using nucleophilic aromatic isocyanide. E-J Chem 9:791–795. https://doi.org/10.1155/2012/931293

    Article  CAS  Google Scholar 

  180. Esmaeili AA, Zangouei M, Hosseinabadi R, Fakhari AR (2012) Three-component reactions of isocyanides, dialkyl acetylenedicarboxylates, and trans-cinnamoyl chlorides for the synthesis of highly functionalized 2-vinyl furans. Mol Divers 16:145–150. https://doi.org/10.1007/s11030-011-9341-2

    Article  CAS  PubMed  Google Scholar 

  181. Rahmani F, Darehkordi A, Boger D, Boyce C, Labrili M, Sehon C, Jin Q, Wiehn M, Vinogradova E, Togni A (2017) Synthesis of trifluoromethylated pyrroles via a one-pot three-component reaction. Synlett 28:1224–1226. https://doi.org/10.1055/s-0036-1588732

    Article  CAS  Google Scholar 

  182. Maghsoodlou MT, Khandan-Barani K, Hazeri N, Habibi-Khorasani SM, Willis AC (2014) A novel one-pot synthesis of symmetric dialkyl 2, 5-bis ((2, 6-dimethylphenyl) imino)-2, 5-dihydrofuran-3, 4-dicarboxylate derivatives. Res Chem Intermed 40:779–785. https://doi.org/10.1007/s11164-012-1002-2

    Article  CAS  Google Scholar 

  183. Azizian J, Ramazani A, Haji M, Azizkhani V (2011) One-pot, three-component synthesis of 5-(Alkylimino)-2-(diethoxyphosphoryl)-2, 5-dihydrofuran-3, 4-dicarboxylates. Synth Commun 41:3609–3619. https://doi.org/10.1080/00397911.2010.519094

    Article  CAS  Google Scholar 

  184. Ramazani A, Rezaei A, Mahyari AT, Rouhani M, Khoobi M (2010) Three-component reaction of an isocyanide and a dialkyl acetylenedicarboxylate with a phenacyl halide in the presence of water: an efficient method for the one-pot synthesis of γ-iminolactone derivatives. Helv Chim Acta 93:2033–2036

    Article  CAS  Google Scholar 

  185. Asghari S, Tayebi Z, Khabbazi Habibi A (2013) Reaction of tert-butyl isocyanide with alkyl propiolates in the presence of α-chloroketones. J Heterocycl Chem 50:874–878. https://doi.org/10.1002/hlca.201000057

    Article  CAS  Google Scholar 

  186. Rouhani M, Ramazani A, Joo SW, Hanifehpour Y (2012) Very efficient and rapid catalyst-free one-pot three component synthesis of 2, 5-Dihydro-5-imino-2-methylfuran-3, 4-dicarboxylate derivatives under ultrasound irradiation. Bull Korean Chem Soc 33:4127–4130. https://doi.org/10.5012/bkcs.2012.33.12.4127

    Article  CAS  Google Scholar 

  187. Sarvary A, Shaabani S, Shaabani A, Ng SW (2011) Synthesis of functionalized iminolactones via an isocyanide-based three-component reaction. Tetrahedron 67:3624–3630. https://doi.org/10.1016/j.tet.2011.03.100

    Article  CAS  Google Scholar 

  188. Shaabani A, Mahyari M, Hajishaabanha F, Mofakham H (2014) Synthesis of fully functionalized iminolactones via an isocyanide-based three-component reaction. J Iran Chem Soc 11:1183–1187. https://doi.org/10.1007/s13738-013-0386-2

    Article  CAS  Google Scholar 

  189. Adib M, Feizi S, Shahzad Shirazi M, Zhu LG, Reza Bijanzadeh H (2014) Reaction of isonitriles with dibenzoylacetylene leading to furan and difuropyran derivatives. Helv Chim Acta 97:524–531. https://doi.org/10.1002/hlca.201300384

    Article  CAS  Google Scholar 

  190. Khandan-Barani K, Maghsoodlou MT, Habibi-Khorasani SM, Hazeri N, Sajadikhah SS (2011) Three-component reaction between alkyl (aryl) isocyanides and dialkyl acetylenedicarboxylates in the presence of ethyl trifluoroacetate. J Chem Res 35:231–233. https://doi.org/10.3184/174751911X13025338429293

    Article  CAS  Google Scholar 

  191. Ghadari R, Hajishaabanha F, Mahyari M, Shaabani A, Khavasi HR (2012) An unexpected route toward the synthesis of spiro-benzo [b] acridine-furan derivatives. Tetrahedron Lett 53:4018–4021. https://doi.org/10.1016/j.tetlet.2012.05.107

    Article  CAS  Google Scholar 

  192. Asghari S, Qandalee M, Sarmadi AA (2017) One-pot synthesis of γ-spiroiminolactones and γ-dispiroiminolactones using N, N′-disubstituted parabanic acid and thioparabanic acid derivatives. Mol Divers 1:11. https://doi.org/10.1007/s11030-016-9698-3

    Article  CAS  Google Scholar 

  193. Ghandi M, Ghomi A-T, Kubicki M (2013) Synthesis of cyclopentadiene-fused chromanones via one-pot multicomponent reactions. J Org Chem 78:2611–2616. https://doi.org/10.1021/jo302790y

    Article  CAS  PubMed  Google Scholar 

  194. Alizadeh A, Rostamnia S, Zhu L-G (2010) A novel pseudo-seven-component diastereoselective synthesis of λ 5-phosphanylidene bis (2, 5-dioxotetrahydro-1H-pyrrole-3-carboxylates) via binucleophilic systems. Tetrahedron Lett 51:4750–4754. https://doi.org/10.1016/j.tetlet.2010.07.027

    Article  CAS  Google Scholar 

  195. Adib M, Sheikhi E, Haghshenas P, Rajai-Daryasarei S, Bijanzadeh HR, Zhu L-G (2014) A highly diastereoselective five-component synthesis of 1-(alkylimino)-5, 5-dicyano-3a-aryloctahydro-3-oxacyclobuta [cd] pentalene-1a, 2, 5a, 5b (2H, 3aH)-tetracarboxylates. Tetrahedron Lett 55:4983–4986. https://doi.org/10.1016/j.tetlet.2014.07.007

    Article  CAS  Google Scholar 

  196. Khooshehchin A, Safaei H (2018) Synthesis of conjoined 1, 5-dithiaspiro derivatives through catalyst free double reaction of carbon disulfide with dialkyl acetylenedicarboxylates and isocyanide derivatives. J Sulfur Chem 39:579–587. https://doi.org/10.1080/17415993.2018.1485919

    Article  CAS  Google Scholar 

  197. Shaabani A, Yavari I, Teimouri MB, Bazgir A, Bijanzadeh HR (2001) New and efficient synthesis of dialkyl 2-[1-p-nitrophenyl-2-(alkylamino)-2-oxoethyl] malonates. Tetrahedron 57:1375–1378. https://doi.org/10.1016/S0040-4020(00)01122-4

    Article  CAS  Google Scholar 

  198. Shaabani A, Teimouri MB, Bazgir A, Bijanzadeh HR (2003) Introducing a novel class of four-component reactions. Mol Divers 6:199–206. https://doi.org/10.1023/B:MODI.0000006759.20910.f1

    Article  CAS  PubMed  Google Scholar 

  199. Shaabani A, Hooshmand SE (2016) Isocyanide and meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6:58142–58159. https://doi.org/10.1039/C6RA11701E

    Article  CAS  Google Scholar 

  200. Akbarzadeh R, Amanpour T, Mirzaei P, Bazgir A (2011) A simple four-component synthesis of ferrocenyl amidodiesters and ferrocenyl triamides. J Organomet Chem 696:3421–3424. https://doi.org/10.1016/j.jorganchem.2011.07.036

    Article  CAS  Google Scholar 

  201. Teimouri MB, Asnaashari B, Moayedi M, Naderi S (2015) Diastereoselective one-pot synthesis of succinimides bearing a chromone unit. Synlett 26:101–107. https://doi.org/10.1055/s-0034-1378926

    Article  CAS  Google Scholar 

  202. Teimouri MB, Akbari-Moghaddam P, Golbaghi G (2011) Pseudo-five-component reaction between 3-formylchromones, Meldrum’s acid, isocyanides and primary arylamines: diversity-oriented synthesis of novel chromone-containing peptidomimetics. ACS Comb Sci 13:659–666. https://doi.org/10.1021/co200125a

    Article  CAS  PubMed  Google Scholar 

  203. Teimouri MB, Akbari-Moghaddam P (2011) An efficient one-pot method for the synthesis of novel ferrocene–triamide conjugates via pseudo five-component reaction. Tetrahedron 67:5928–5934. https://doi.org/10.1016/j.tet.2011.06.048

    Article  CAS  Google Scholar 

  204. Gutsche CD, Nam KC (1988) Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. J Am Chem Soc 110:6153–6162. https://doi.org/10.1021/ja00226a034

    Article  CAS  PubMed  Google Scholar 

  205. Nimse SB, Kim T (2013) Biological applications of functionalized calixarenes. Chem Soc Rev 42:366–386. https://doi.org/10.1039/C2CS35233H

    Article  CAS  PubMed  Google Scholar 

  206. Zadmard R, Akbari-Moghaddam P, Darvishi S, Mirza-Aghayan M (2017) A highly selective fluorescent chemosensor for NADH based on calix[4]arene dimer. Tetrahedron 73:604–607. https://doi.org/10.1016/j.tet.2016.12.053

    Article  CAS  Google Scholar 

  207. Zadmard R, Akbari-Moghaddam P, Darvishi S, Mirza-Aghayan M (2016) An efficient multi-component synthesis of highly functionalized calix [4] arenes with pronounced binding affinity toward β-lactoglobulin. Eur J Org Chem 2016:3894–3899. https://doi.org/10.1002/ejoc.201600543

    Article  CAS  Google Scholar 

  208. Zadmard R, Darvishi S, Akbari-Moghaddam P (2016) Synthesis and protein binding properties of novel highly functionalized Calix [4] arene. J Incl Phenom Macrocycl Chem 86:27–32. https://doi.org/10.1007/s10847-016-0637-9

    Article  CAS  Google Scholar 

  209. Habibi A, Soltanloo Z, Beiraghi A, Valizadeh Y (2015) One-pot synthesis of new dye derivatives of succinimide via three-component reaction of alkylidene Meldrum’s acid, isocyanides and p-aminoazobenzene derivatives. Dyes Pigm 113:481–486. https://doi.org/10.1016/j.dyepig.2014.09.020

    Article  CAS  Google Scholar 

  210. Shaabani A, Mofakham H, Maleki A, Hajishaabanha F (2010) Novel isocyanide-based one-pot multicomponent syntheses of tetrahydrobenzo [b][1, 4] oxazepine and malonamide derivatives. J Comb Chem 12:630–632. https://doi.org/10.1021/cc100032d

    Article  CAS  PubMed  Google Scholar 

  211. Rahmati A, Ahmadi S, Ahmadi-Varzaneh M (2014) One-pot synthesis of 1, 2, 4, 5-tetrahydro-2, 4-dioxobenzo [b][1, 4] diazepine and malonamide derivatives using multi-component reactions. Tetrahedron 70:9512–9521. https://doi.org/10.1016/j.tet.2014.10.060

    Article  CAS  Google Scholar 

  212. Habibi A, Tarameshloo Z (2011) A new and convenient method for synthesis of barbituric acid derivatives. J Iran Chem Soc 8:287–291. https://doi.org/10.1007/BF03246226

    Article  CAS  Google Scholar 

  213. Kenarkoohi T, Rahmati A (2019) Synthesis of malonamide pseudopeptidic compounds using a pseudo five-component reaction and evaluation of their gelation properties. J Mol Liq 276:714–720. https://doi.org/10.1016/j.molliq.2018.12.029

    Article  CAS  Google Scholar 

  214. Mokhtari TS, Amrollahi MA, Sheikhhosseini E, Sheibani H (2018) Isocyanide-based multi-component reactions: one-pot catalyst-free synthesis of carboxamides. ChemistrySelect 3:12813–12815. https://doi.org/10.1002/slct.201801001

    Article  CAS  Google Scholar 

  215. Googol F, Rahmati A (2018) Synthesis of a new series of multifunctional dialkyl 2-(1-(alkylamino)-1, 3-dioxo-3-phenylpropan-2-yl) malonates as low molecular weight supramolecular organogelators using five-component reaction. Tetrahedron 74:240–252. https://doi.org/10.1016/j.tet.2017.11.040

    Article  CAS  Google Scholar 

  216. Paprocki D, Koszelewski D, Żądło A, Walde P, Ostaszewski R (2016) Environmentally friendly approach to α-acyloxy carboxamides via a chemoenzymatic cascade. RSC Adv 6:68231–68237. https://doi.org/10.1039/C6RA13078J

    Article  CAS  Google Scholar 

  217. Madej A, Paprocki D, Koszelewski D, Żądło-Dobrowolska A, Brzozowska A, Walde P, Ostaszewski R (2017) Efficient Ugi reactions in an aqueous vesicle system. RSC Adv 7:33344–33354. https://doi.org/10.1039/C7RA03376A

    Article  CAS  Google Scholar 

  218. Karimi B, Farhangi E (2013) One-pot oxidative Passerini reaction of alcohols using a magnetically recyclable TEMPO under metal-and halogen-free conditions. Adv Synth Catal 355:508–516. https://doi.org/10.1002/adsc.201200449

    Article  CAS  Google Scholar 

  219. Azarifar D, Ghorbani-Vaghei R, Daliran S, Oveisi AR (2017) A multifunctional zirconium-based metal–organic framework for the one-pot tandem photooxidative passerini three-component reaction of alcohols. ChemCatChem 9:1992–2000. https://doi.org/10.1002/cctc.201700169

    Article  CAS  Google Scholar 

  220. Shaabani A, Hezarkhani Z, Badali E (2015) One-pot oxidative Ugi-type three-component reaction of aromatic hydrocarbons of petroleum naphtha: comparing catalytic effect of cellulose-and wool-SO3H supported with manganese dioxide nanostructures. RSC Adv 5:91966–91973. https://doi.org/10.1039/C5RA16608J

    Article  CAS  Google Scholar 

  221. Shaabani A, Hezarkhani Z (2017) Ferrite nanoparticles supported on natural wool in one-pot tandem oxidative reactions: strategy to synthesize benzimidazole, quinazolinone and quinoxaline derivatives. Appl Organomet Chem 31(1):e3542. https://doi.org/10.1002/aoc.3542

    Article  CAS  Google Scholar 

  222. Shaabani A, Hezarkhani Z, Nejad MK (2016) AuCu and AgCu bimetallic nanoparticles supported on guanidine-modified reduced graphene oxide nanosheets as catalysts in the reduction of nitroarenes: tandem synthesis of benzo[b][1,4]diazepine derivatives. RSC Adv 6:30247–30257. https://doi.org/10.1039/C6RA03132C

    Article  CAS  Google Scholar 

  223. Shaabani A, Sepahvand H, Amini MM, Hashemzadeh A, Borjian Boroujeni M, Badali E (2018) Tandem oxidative isocyanide-based cycloaddition reactions in the presence of MIL-101(Cr) as a reusable solid catalyst. Tetrahedron 74:1832–1837. https://doi.org/10.1016/j.tet.2018.02.046

    Article  CAS  Google Scholar 

  224. Sugimoto K, Tamura K, Tohda C, Toyooka N, Nemoto H, Matsuya Y (2013) Structure–activity-relationship studies on dihydrofuran-fused perhydrophenanthrenes as an anti-Alzheimer’s disease agent. Bioorg Med Chem 21:4459–4471. https://doi.org/10.1016/j.bmc.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  225. Yu D-Y, Matsuya Y, Zhao Q-L, Ahmed K, Wei Z-L, Hori T, Nemoto H, Kondo T (2008) Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds. Apoptosis 13:448–461. https://doi.org/10.1007/s10495-007-0080-x

    Article  CAS  PubMed  Google Scholar 

  226. Teimouri MB, Eskandari M (2011) An efficient synthesis of novel chromone-containing furopyrimidines. J Chem Res 35:500–505. https://doi.org/10.3184/174751911X13146322603355

    Article  CAS  Google Scholar 

  227. Teimouri MB, Tayyebi A (2010) N, N-dimethylformamide-promoted reaction of isocyanides and barbituric acids: an easy synthesis of 5-[(alkyl or arylamino) methylene] barbituric acids. J Chem Res 34:140–144. https://doi.org/10.3184/030823410X12682371167951

    Article  CAS  Google Scholar 

  228. Shaabani A, Teimouri MB, Afgheh M, Eskandari M (2011) A simple and convenient approach to the synthesis of aminofuropyrimidindiones. J Chem Res 35:37–42. https://doi.org/10.3184/174751911X556765

    Article  CAS  Google Scholar 

  229. Bayat M, Shiraz NZ, Hosseini SH (2010) A novel approach for the synthesis of furopyrimidine and oxobenzofuran derivatives. Helv Chim Acta 93:2189–2193. https://doi.org/10.1002/hlca.201000029

    Article  CAS  Google Scholar 

  230. Keshipour S, Shaabani S, Shaabani A (2012) A novel one-pot pseudo five-component isocyanide-based reaction: synthesis of 2, 6-bis (alkylamino)-benzofuro [5, 6-b] furan-4, 8-dione derivatives. Tetrahedron Lett 53:7085–7087. https://doi.org/10.1016/j.tetlet.2012.10.072

    Article  CAS  Google Scholar 

  231. Hajishaabanha F, Shaabani S, Shaabani A (2016) Synthesis of furan-fused quinoxaline tetracyclic scaffolds via a three-component isocyanide-based reaction. Res Chem Intermed 42:4109–4120. https://doi.org/10.1007/s11164-015-2262-4

    Article  CAS  Google Scholar 

  232. Damavandi S, Sandaroos R (2012) Catalyst-free synthesis of polysubstituted furans. Heterocycl Commun 18:43–45. https://doi.org/10.1515/hc-2011-0055

    Article  CAS  Google Scholar 

  233. Damavandi S, Sandaroos R, Pashirzad M (2012) Synthesis of polysubstituted furans via a novel and efficient heterocyclization approach. Res Chem Intermed 38:1969–1974. https://doi.org/10.1007/s11164-012-0518-9

    Article  CAS  Google Scholar 

  234. Goldani MT, Sandaroos R, Damavandi S (2014) Efficient polymeric catalyst for one-pot synthesis of acenaphtho [1, 2-b] pyrroles. Res Chem Intermed 40:139–147. https://doi.org/10.1007/s11164-012-0939-5

    Article  CAS  Google Scholar 

  235. Kiamehr M, Moghaddam FM, Erami MS (2015) A convenient synthesis of 3-formyl-2-thioacetamide-indole derivatives via the one-pot reaction of indolin-2-thiones, isocyanides and chloroacetylchloride. Tetrahedron Lett 56:7190–7192. https://doi.org/10.1016/j.tetlet.2015.11.044

    Article  CAS  Google Scholar 

  236. Moghaddam FM, Saeidian H, Mirjafary Z, Taheri S, Kheirjou S (2009) A new and facile synthesis of thieno [2, 3-b] indole derivatives via condensation of isocyanide and indolin-2-thiones. Synlett 2009:1047–1050. https://doi.org/10.1055/s-0028-1088107

    Article  CAS  Google Scholar 

  237. Akbarzadeh R, Amanpour T, Khavasi HR, Bazgir A (2012) Isocyanide-based four-component synthesis of 1, 3-indandionylamidinium betaines. Tetrahedron 68:3868–3874. https://doi.org/10.1016/j.tet.2012.03.039

    Article  CAS  Google Scholar 

  238. Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Solimani V, Marandi G, Razmjoo Z (2008) A simple synthesis of enaminones from reaction between isocyanides and cyclic 1, 3-dicarbonyl compounds. J Chem Res 2008:198–200. https://doi.org/10.3184/030823408X314482

    Article  Google Scholar 

  239. Ghandi M, Ghomi A-T, Kubicki M (2013) Synthesis of pyrrole-fused chromanones via one-pot multicomponent reactions. Tetrahedron 69:3054–3060. https://doi.org/10.1016/j.tet.2013.01.085

    Article  CAS  Google Scholar 

  240. Sheikhhosseini E (2018) Design and effective synthesis of novel furo [2, 3-d] pyrimidine derivatives containing ethylene ether spacers. J Saudi Chem Soc 22:337–342. https://doi.org/10.1016/j.jscs.2016.05.005

    Article  CAS  Google Scholar 

  241. Teimouri MB, Zolfaghari F, Naderi S (2017) Furochromone-isatin conjugates via an uncatalyzed diastereoselective [4 + 1] cycloaddition/tautomerization/Friedel-Crafts hydroxyalkylation domino reaction. Tetrahedron 73:262–271. https://doi.org/10.1016/j.tet.2016.12.010

    Article  CAS  Google Scholar 

  242. Teimouri MB, Asnaashari B (2014) One-pot synthesis of 5-(furo [3, 4-b] chromenyl)-5-hydroxybarbiturates via a three-component cascade reaction. Tetrahedron Lett 55:2249–2252. https://doi.org/10.1016/j.tetlet.2014.02.075

    Article  CAS  Google Scholar 

  243. Teimouri MB (2011) Serendipitous stereoselective synthesis of brand-new fluorescent dyes:(1Z)-3-(alkylimino)-1-[(chromone-3-yl) methylene]-1, 3-dihydro-9H-furo [3, 4-b] chromen-9-one-type fluorophores with blue fluorescence emission properties. Tetrahedron 67:1837–1843. https://doi.org/10.1016/j.tet.2011.01.033

    Article  CAS  Google Scholar 

  244. Teimouri MB, Mohammadnia S (2018) Reaction between alkyl isocyanides and 3-formylchromones in the presence of monocyclic unsaturated acyl compounds: competition between Friedel–Crafts acylation and Diels–Alder cycloaddition. Tetrahedron 74:1767–1775. https://doi.org/10.1016/j.tet.2018.01.054

    Article  CAS  Google Scholar 

  245. Teimouri MB, Enanlou S (2018) Four-component synthesis of alkyl [2-[(cyclohexylamino) carbonyl]-4-oxo-2H-chromen-3 (4H)-ylidene] methyl 3, 4, 5, 6-tetrahalophthalates via a domino O-acylation/α-addition cyclization/alcoholysis sequence. Tetrahedron Lett 59:1220–1225. https://doi.org/10.1016/j.tetlet.2018.02.037

    Article  CAS  Google Scholar 

  246. Amanpour T, Zangger K, Belaj F, Bazgir A, Dallinger D, Kappe CO (2015) A detailed investigation of the multicomponent reaction of salicylaldehyde, ethyl acetoacetate and isocyanides under microwave heating. Tetrahedron 71:7159–7169. https://doi.org/10.1016/j.tet.2014.12.002

    Article  CAS  Google Scholar 

  247. Adib M, Ansari S, Zhu LG, Rahimi-Nasrabadi M (2013) A Simple Synthesis of 2-{(Arylmethylidene) hydrazinylidene]-3-hydroxy-4H-furo [3, 2-c] pyran-4 (3H)-ones. Helv Chim Acta 96:675–681. https://doi.org/10.1002/hlca.201200419

    Article  CAS  Google Scholar 

  248. Imanieh H, Sarlak M, Amanpour T, Bazgir A (2013) An efficient isocyanide-based three-component diastereoselective synthesis of chromane-3, 4-dicarboxamides. Helv Chim Acta 96:1978–1982. https://doi.org/10.1002/hlca.201200551

    Article  CAS  Google Scholar 

  249. Falck J, Manna S (1981) An intramolecular passerini reaction: synthesis of hydrastine. Tetrahedron Lett 22:619–620. https://doi.org/10.1016/S0040-4039(01)92504-3

    Article  CAS  Google Scholar 

  250. Bardelle C, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P (2008) Inhibitors of the tyrosine kinase EphB4. Part 1: structure-based design and optimization of a series of 2, 4-bis-anilinopyrimidines. Bioorg Med Chem Lett 18:2776–2780. https://doi.org/10.1016/j.bmcl.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  251. Cho Y-S, Cho C-G (2008) Improved total synthesis of (±)-trans-dihydronarciclasine, devised for large-scale preparation. Tetrahedron 64:2172–2177. https://doi.org/10.1016/j.tet.2007.12.031

    Article  CAS  Google Scholar 

  252. Bayat M, Nasehfard H (2015) SiO2 nanoparticle-catalyzed facile and efficient one-pot synthesis of N-alkyl-2, 5-bis [(E)-2-phenylvinyl]-1, 3-dioxol-4-amine under solvent-free conditions. J Heterocycl Chem 53:1474–1478. https://doi.org/10.1002/jhet.2450

    Article  CAS  Google Scholar 

  253. Ramazani A, Zeinali Nasrabadi F, Ahmadi Y (2011) One-pot, four-component synthesis of fully substituted 1, 3, 4-oxadiazole derivatives from (Isocyanoimino) triphenylphosphorane, a primary amine, an aromatic carboxylic acid, and chloroacetone. Helv Chim Acta 94:1024–1029. https://doi.org/10.1002/hlca.201000356

    Article  CAS  Google Scholar 

  254. Bayat M, Nasri S, Hosseini H, Hassanzadeh F (2012) One-pot synthesis of α-hydroxyamides using alkyl isocyanides and aryl aldehydes. Monatshefte Chem 143:801–804. https://doi.org/10.1007/s00706-011-0644-x

    Article  CAS  Google Scholar 

  255. Ramazani A, Souldozi A (2009) (N-Isocyanimino) triphenylphosphorane as an efficient reagent for the synthesis of 1, 3, 4-oxadiazoles from 3-substituted benzoic acid derivatives. Phosphorus SulfurSilicon 184:3191–3198. https://doi.org/10.1080/10426500802705537

    Article  CAS  Google Scholar 

  256. Ahankar H, Ramazani A, Amini I, Ahmadi Y, Souldozi A (2011) The reaction of (N-isocyanimino) triphenylphosphorane with (E)-3-aryl-2-propenoic acid derivatives: one-pot synthesis of 2-[(E)-2-aryl-1-ethenyl]-1, 3, 4-oxadiazoles via intramolecular aza-Wittig reaction. Heteroatom Chem 22:612–616. https://doi.org/10.1002/hc.20701

    Article  CAS  Google Scholar 

  257. Rouhani M, Ramazani A, Joo SW (2014) Novel, fast and efficient one-pot sonochemical synthesis of 2-aryl-1, 3, 4-oxadiazoles. Ultrason Sonochem 21:262–267. https://doi.org/10.1016/j.ultsonch.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  258. La Spisa F, Tron GC, El Kaim L (2014) The Nef reaction of isocyanides. Synthesis 46:829–841. https://doi.org/10.1055/s-0033-1338596

    Article  CAS  Google Scholar 

  259. Cui L, Liu Q, Yu J, Ni C, Yu H (2011) A novel one-pot synthesis of α-keto-1, 3, 4-oxadiazole derivatives based on isocyanide–Nef reaction. Tetrahedron Lett 52:5530–5533. https://doi.org/10.1016/j.tetlet.2011.08.086

    Article  CAS  Google Scholar 

  260. Lygin AV, de Meijere A (2010) Isocyanides in the synthesis of nitrogen heterocycles. Angew Chem Int Ed 49:9094–9124. https://doi.org/10.1002/anie.201000723

    Article  CAS  Google Scholar 

  261. Yavari I, Hosseinpour R, Pashazadeh R, Ghanbari E, Skoulika S (2013) Nef-isocyanide–Perkow synthesis of new polarized olefins containing 2-dicyanomethylene-2, 3-dihydrothiazole and 2-dicyanomethylene-1, 3-dithiole moieties. Tetrahedron 69:2462–2467. https://doi.org/10.1016/j.tet.2013.01.023

    Article  CAS  Google Scholar 

  262. Talebizadeh M, Anary-Abbasinejad M, Darehkordi A (2018) A simple one-pot three-component synthesis of dihydrobenzo [4, 5] imidazo [2, 1-b] thiazol-3-ols by reaction of acyl chlorides, isocyanides, and 2-mercaptobenzimidazoles. J Heterocycl Chem 55:2737–2743. https://doi.org/10.1002/jhet.3335

    Article  CAS  Google Scholar 

  263. Talebizadeh M, Darehkordi A, Anary-Abbasinejada M (2018) A simple and efficient method for the synthesis of 4-tosyloxazoles from tosylmethyl isocyanide with α-ketoimidoyl chlorides. Arkovic 5:1–9. https://doi.org/10.24820/ark.5550190.p010.556

    Article  CAS  Google Scholar 

  264. Moradi L, Bahrami C, Mirzaei A, Zarehbin MR, Yavari I (2015) A one-pot, catalyst-free synthesis of novel 2-thioxo-tetrahydropyrimidine derivatives via the three-component reaction of alkyl chloroglyoxalates, alkyl isocyanides, and thioureas. Tetrahedron Lett 56:1510–1512. https://doi.org/10.1016/j.tetlet.2015.02.025

    Article  CAS  Google Scholar 

  265. Yavari I, Ghanbari E, Hosseinpour R (2014) Formation of phosphorylated 3H-pyrroles from Nef–isocyanide–perkow adducts and tosylmethyl isocyanide. Helv Chim Acta 97:1004–1008. https://doi.org/10.1002/hlca.201300400

    Article  CAS  Google Scholar 

  266. Yavari I, Pashazadeh R, Hosseinpour R, Ghanbari E (2013) From Nef–isocyanide adducts toward functionalized 5-iminothiazolidines containing polarized C=C bonds. Helv Chim Acta 96:2191–2195. https://doi.org/10.1002/hlca.201200544

    Article  CAS  Google Scholar 

  267. Yavari I, Hosseinpour R, Pashazadeh R (2015) Formation ofdialkyl 2-[3-Alkoxy-1-(alkylimino)-1-chloro-3-oxopropan-2-ylidene] hydrazine-1, 1-dicarboxylates of α-(Alkoxycarbonyl) imidoyl chlorides from phosphine diazo ester zwitterions and Nef–isocyanide adducts. Helv Chim Acta 98:374–380. https://doi.org/10.1002/hlca.201400225

    Article  CAS  Google Scholar 

  268. Maghsoodlou MT, Hazeri N, Khandan-Barani K, Habibi-Khorasani SM, Abedi A (2014) Synthesis of 1-(Cyclohexylamino)-2-(aryl) pyrrolo [1, 2-a] quinoline-3-carbonitrile derivatives using a mild, four-component reaction. J Heterocycl Chem 51:152–155. https://doi.org/10.1002/jhet.1913

    Article  CAS  Google Scholar 

  269. Yavari I, Aminkhani A, Skoulika S (2013) An efficient diastereoselective one-pot synthesis of functionalized dihydropyrrolo [1, 2-a] quinolines. J Iran Chem Soc 10:107–111. https://doi.org/10.1007/s13738-012-0130-3

    Article  CAS  Google Scholar 

  270. Yavari I, Khalili G, Mirzaei A (2010) Tandem synthesis of 1-(alkylamino)-2, 4-diarylpyrimido [6, 1-a] isoquinolin-5-ium chlorides from isoquinoline, N-alkyl-benzimidoyl chlorides, and isocyanides. Tetrahedron Lett 51:1190–1192. https://doi.org/10.1016/j.tetlet.2009.12.097

    Article  CAS  Google Scholar 

  271. Yavari I, Mirzaei A, Khalili G (2010) Solvent-free synthesis of diphenyl [2-(Aminocarbonyl)-1, 2-dihydroisoquinolin-1-yl] phosphonates from isoquinoline, isocyanates, and diphenyl phosphonate. Helv Chim Acta 93:654–658. https://doi.org/10.1002/hlca.200900247

    Article  CAS  Google Scholar 

  272. Marandi G, Saghatforoush L, Kabiri R (2015) A high performance route for the synthesis of dihydropyrrolo [1, 2-f] phenanthridine scaffolds by using a one-pot four-component reaction. J Heterocycl Chem 53:734–737. https://doi.org/10.1002/jhet.2338

    Article  CAS  Google Scholar 

  273. Khalili G (2016) A diastereoselective synthesis of (Z)-3-[(aryl)(hydroxyimino) methyl]-2-cyclohexyl-1-(cyclohexylamino) imidazo [5, 1-a] isoquinolinium chlorides from isoquinoline, chlorooximes, and cyclohexyl isocyanide. Monatshefte Chem 147:429–433. https://doi.org/10.1007/s00706-015-1522-8

    Article  CAS  Google Scholar 

  274. Lee S-C, Park SB (2007) Novel application of Leuckart–Wallach reaction for synthesis of tetrahydro-1, 4-benzodiazepin-5-ones library. Chem Commun. https://doi.org/10.1039/B709768A

    Article  Google Scholar 

  275. Butini S, Gabellieri E, Huleatt PB, Campiani G, Franceschini S, Brindisi M, Ros S, Coccone SS, Fiorini I, Novellino E (2008) An efficient approach to chiral C8/C9-piperazino-substituted 1, 4-benzodiazepin-2-ones as peptidomimetic scaffolds. J Org Chem 73:8458–8468. https://doi.org/10.1021/jo8015456

    Article  CAS  PubMed  Google Scholar 

  276. Shaabani A, Maleki A, Mofakham H (2008) Click reaction: highly efficient synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones. Synth Commun 38:3751–3759. https://doi.org/10.1080/00397910802213802

    Article  CAS  Google Scholar 

  277. Shaabani A, Mofakham H, Mousavifaraz S (2012) A two-step synthesis of 1H-Tetrazolyl-1H-1, 4-benzonitriles and 1H-tetrazolyl-benzo [b][1, 4] diazepines. Synlett 23:731–736. https://doi.org/10.1055/s-0031-1290603

    Article  CAS  Google Scholar 

  278. Trivedi BK, Bruns RF (1988) [1, 2, 4] Triazolo [4, 3-a] quinoxalin-4-amines: a new class of A1 receptor selective adenosine antagonists. J Med Chem 31:1011–1014. https://doi.org/10.1021/jm00400a021

    Article  CAS  PubMed  Google Scholar 

  279. McQuaid LA, Smith EC, South KK, Mitch CH, Schoepp DD, True RA, Calligaro DO, O’Malley PJ, Lodge D, Ornstein PL (1992) Synthesis and excitatory amino acid pharmacology of a series of heterocyclic-fused quinoxalinones and quinazolinones. J Med Chem 35:3319–3324. https://doi.org/10.1021/jm00096a002

    Article  CAS  PubMed  Google Scholar 

  280. Shaabani A, Hajishaabanha F, Mahyari M, Mofakham H, Ng SW (2011) A novel one-pot pseudo-four-component isocyanide-based reaction: an unexpected approach for the synthesis of tetrahydrodiisoindoloquinoxalines and tetrahydrobenzodiisoindoloquinoxalines. Tetrahedron 67:8360–8366. https://doi.org/10.1016/j.tet.2011.08.061

    Article  CAS  Google Scholar 

  281. Shaabani A, Mohammadian R, Hooshmand SE, Hashemzadeh A, Amini MM (2017) Zirconium metal-organic framework (UiO-66) as a robust catalyst toward solvent-free synthesis of remarkable heterocyclic rings. ChemistrySelect 2:11906–11911. https://doi.org/10.1002/slct.201702410

    Article  CAS  Google Scholar 

  282. Jehbez SA, Safaei HR (2018) A novel catalytic one-pot three-component reaction of aldehydes, o-phenylenediamine derivatives and isocyanides for synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives in the presence of zirconium tetrachloride. J Iran Chem Soc. https://doi.org/10.1007/s13738-018-1301-7

    Article  Google Scholar 

  283. Ahmadi F, Bazgir A (2016) Synthesis of benzoimidazoquinazolines by cobalt-catalyzed isocyanide insertion–cyclization. RSC Adv 6:61955–61958. https://doi.org/10.1039/C6RA06828F

    Article  CAS  Google Scholar 

  284. Vahabi AH, Alizadeh A, Khavasi HR, Bazgir A (2017) Palladium-catalyzed migratory insertion of isocyanides into C (thiophene)–SMe bonds: access to atom-transfer reactions. Eur J Org Chem 2017:5347–5356. https://doi.org/10.1002/ejoc.201701026

    Article  CAS  Google Scholar 

  285. Nematpour M, Rezaee E, Tabatabai SA, Jahani M (2017) A copper-catalyzed synthesis of functionalized quinazolines from isocyanides and aniline tri-and dichloroacetonitrile adducts through intramolecular C-H activation. Synlett 28:1441–1444. https://doi.org/10.1055/s-0036-15588166

    Article  CAS  Google Scholar 

  286. Khalaj M, Taherkhani M, Mousavi-Safavi SM, Akbari J (2018) Synthesis of benzamide derivatives by the reaction of arenes and isocyanides through a C–H bond activation strategy. Synlett 29:94–98. https://doi.org/10.1055/s-0036-1588565

    Article  CAS  Google Scholar 

  287. Shahsavari HR, Aghakhanpour RB, Hossein-Abadi M, Kia R, Raithby PR (2018) Stable trans isomer as the kinetic and theromodynamic product for the oxidative addition of MeI to cycloplatinated (II) complexes comprising isocyanide ligands. Appl Organomet Chem 32:e4216. https://doi.org/10.1002/aoc.4216

    Article  CAS  Google Scholar 

  288. Fereidoonnezhad M, Shahsavari HR, Abedanzadeh S, Nezafati A, Khazali A, Mastrorilli P, Babaghasabha M, Webb J, Faghih Z, Faghih Z (2018) Synthesis, structural characterization, biological evaluation and molecular docking studies of new platinum (ii) complexes containing isocyanides. New J Chem 42:8681–8692. https://doi.org/10.1039/C7NJ04819J

    Article  CAS  Google Scholar 

  289. Fereidoonnezhad M, Shahsavari HR, Lotfi E, Babaghasabha M, Fakhri M, Faghih Z, Faghih Z, Hassan Beyzavi M (2018) (Benzyl isocyanide) gold (I) pyrimidine-2-thiolate complex: synthesis and biological activity. Appl Organomet Chem 32:e4200. https://doi.org/10.1002/aoc.4200

    Article  CAS  Google Scholar 

  290. Anary-Abbasinejad M, Karimi N, Mehrabi H, Ranjbar-Karimi R (2012) A simple route for the synthesis of symmetrical thiourea derivatives and amidinium cations by reaction between isocyanides, amines and carbon disulfide. J Sulfur Chem 33:653–659. https://doi.org/10.1080/17415993.2012.724419

    Article  CAS  Google Scholar 

  291. Khalaj M, Farahani N, Sadeghpour M, Rajabzadeh H, Khatami SM (2018) PEG/ZnBr 2-assisted multicomponent reactions: a novel procedure for the synthesis of functionalized 5, 6-dihydropyran-2-ones. Synlett 29:894–897. https://doi.org/10.1055/s-0036-1591760

    Article  CAS  Google Scholar 

  292. Samzadeh-Kermani A, Ataeifar S (2018) An efficient procedure for the synthesis of functionalized 3, 4-dihydro-2H-pyrans via catalytic multicomponent reaction. Monatshefte Chem 149:47–56. https://doi.org/10.1007/s00706-017-2065-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Iran National Science Foundation (INSF) and the Research Council of Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, A., Mohammadian, R., Afshari, R. et al. The status of isocyanide-based multi-component reactions in Iran (2010–2018). Mol Divers 25, 1145–1210 (2021). https://doi.org/10.1007/s11030-020-10049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10049-7

Keywords

Navigation