Skip to main content

Advertisement

Log in

Pregnane X Receptor and P-glycoprotein: a connexion for Alzheimer’s disease management

  • Expert Opinion
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The translational failure between preclinical animal models and clinical outcome has alarmed us to search for a new strategy in the treatment of Alzheimer’s disease (AD). Interlink between Pregnane X Receptor (PXR) and P-glycoprotein (Pgp) at the blood brain barrier (BBB) has raised hope toward a new disease modifying therapy in AD. Pgp is a major efflux transporter for beta amyloid (A\(\upbeta \)) at human BBB. A literature survey reveals diminished expression of Pgp transporter at the BBB in AD patients. Pregnane X Receptor is a major transcriptional regulator of Pgp. Restoration of Pgp at the BBB enhances the elimination of the A\(\upbeta \) from brain alongside and inhibits the apical to basolateral movement of A\(\upbeta \) from the circulatory blood. This review concentrates on in vitro, in vivo, and in silico advancements on the study of the PXR in context to Pgp and discusses the substrate and inhibitor specificity between PXR and Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Graeber MB, Mehraein P (1999) Reanalysis of the first case of Alzheimers disease. Eur Arch Psychiatry Clin Neurosci 249:S10–S13. doi:10.1007/PL00014167

    Google Scholar 

  2. Thies W, Bleiler L, Alzheimer’s Association (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9:208–245. doi:10.1016/j.jalz.2013.02.003

    PubMed  Google Scholar 

  3. Detailed Tables for the National Vital Statistics Report. Deaths: Final Data for 2010. National Center for Health Statistics. http://www.cdc.gov/nchs/data/dvs/deaths2010release.pdf

  4. Aprahamian I, Stella F, Forlenza OV (2013) New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res 138:449–460

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Geerts H, Roberts P, Spiros A, Carr R (2013) A strategy for developing new treatment paradigms for neuropsychiatric and neurocognitive symptoms in Alzheimers disease. Front Pharmacol 4:1–10. doi:10.3389/fphar.2013.00047

    Google Scholar 

  6. Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702. doi:10.1210/er.2001-0038

    PubMed  CAS  Google Scholar 

  7. Hartz AMS, Miller DS, Bauer B (2010) Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-\(\beta \) in a mouse model of Alzheimer’s disease. Mol Pharmacol 77:715–723. doi: 10.1124/mol.109.061754

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Schumacher U, Mollgard K (1997) The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood–brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol 108:179–182. doi:10.1007/s004180050159

    PubMed  CAS  Google Scholar 

  9. Braak H, Braak E (1997) Diagnostic criteria for neuropathologic assessment of Alzheimers disease. Neurobiol Aging 18:85–88. doi:10.1016/S0197-4580(97)00062-6

    Google Scholar 

  10. Kazee AM, Johnson EM (1998) Alzheimer’s disease pathology in non-demented elderly. J Alzheimers Dis 1:81–89

    PubMed  Google Scholar 

  11. Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131:215–221. doi:10.1016/j.cell.2007.10.012

    PubMed  CAS  Google Scholar 

  12. D’Andrea MR, Nagele RG, Wang H-Y, Lee DHS (2002) Consistent immunohistochemical detection of intracellular \(\beta \)-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett 333:163–166. doi: 10.1016/S0304-3940(02)00875-3

    PubMed  Google Scholar 

  13. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116. doi:10.1093/cercor/1.1.103

    PubMed  CAS  Google Scholar 

  14. Kukar T, Murphy MP, Eriksen JL, Sagi SA, Weggen S, Smith TE, Ladd T, Khan MA, Kache R, Beard J (2005) Diverse compounds mimic Alzheimer disease causing mutations by augmenting A\(\beta \)42 production. Nat Med 11:545–550. doi: 10.1038/nm1235

    PubMed  CAS  Google Scholar 

  15. Hecimovic S, Wang J, Dolios G, Martinez M, Wang R, Goate AM (2004) Mutations in APP have independent effects on A\(\beta \) and CTF\(\gamma \) generation. Neurobiol Dis 17:205–218. doi: 10.1016/j.nbd.2004.04.018

    PubMed  CAS  Google Scholar 

  16. Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, Saido TC, Hashimoto T, Iwatsubo T, Nakashima K (2004) Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimers disease. J Neurol Neurosurg Psychiatry 75:1039–1042. doi:10.1136/jnnp.2003.010611

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24:173–182. doi:10.1016/0165-5728(89)90115-X

    PubMed  CAS  Google Scholar 

  18. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by \(\beta \)-amyloid protein and interferon-\(\gamma \). Nature 374:647–650. doi: 10.1038/374647a0

    PubMed  CAS  Google Scholar 

  19. di Masi A, Marinis ED, Ascenzi P, Marino M (2009) Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Asp Med 30:297–343. doi:10.1016/j.mam.2009.04.002

    Google Scholar 

  20. Rathod V, Jain S, Nandekar P, Sangamwar AT (2014) Human pregnane X receptor: a novel target for anticancer drug development. Drug Discov Today 19:63–70. doi:10.1016/j.drudis.2013.08.009

    PubMed  CAS  Google Scholar 

  21. Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, Lambert MH, Moore JT (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16:977– 986

  22. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82. doi:10.1016/S0092-8674(00)80900-9

    PubMed  CAS  Google Scholar 

  23. Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702. doi:10.1210/er.2001-0038

    PubMed  CAS  Google Scholar 

  24. Pondugula SR, Mani S (2013) Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett 328:1–9. doi:10.1016/j.canlet.2012.08.030

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Begley DJ (2004) ABC transporters and the blood–brain barrier. Curr Pharm Des 10:1295–1312. doi:10.2174/1381612043384844

    PubMed  CAS  Google Scholar 

  26. Sun H, Dai H, Shaik N, Elmquist WF (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105. doi:10.1016/S0169-409X(02)00172-2

    PubMed  CAS  Google Scholar 

  27. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood brain barrier. Neurobiol Dis 37:13–25. doi:10.1016/j.nbd.2009.07.030

    PubMed  CAS  Google Scholar 

  28. Bauer Br, Hartz AMS, Fricker G, Miller DS (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol 66:413–419

    PubMed  CAS  Google Scholar 

  29. Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276:14581–14587. doi:10.1074/jbc.M010173200

    PubMed  CAS  Google Scholar 

  30. Lehmann JrM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023. doi:10.1172/JCI3703

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW (2002) Deposition of Alzheimer’s [beta]-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenet Genomics 12:535–541

    CAS  Google Scholar 

  32. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci USA 86:695–698

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Potschka H, Fedrowitz M, Loscher W (2002) P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 327:173–176. doi:10.1016/S0304-3940(02)00423-8

    PubMed  CAS  Google Scholar 

  34. Bendayan R, Ronaldson PT, Gingras D, Bendayan M (2006) In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 54:1159–1167. doi:10.1369/jhc.5A6870.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  35. van Assema Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, Comans EFI, Hoetjes NJ, Tolboom N, Langer O (2012) Blood brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135:181–189. doi:10.1093/brain/awr298

    Google Scholar 

  36. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-\(\beta \) deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290. doi: 10.1172/JCI25247

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Brenn A, Grube M, Peters M, Fischer A, Jedlitschky G, Kroemer HK, Warzok RW, Vogelgesang S (2011) Beta-amyloid downregulates MDR1-P-glycoprotein (Abcb1) expression at the blood–brain barrier in mice. Int J Alzheimer’s Dis 2011:1–6. doi:10.4061/2011/690121

    Google Scholar 

  38. Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, Siegmund W, Walker LC, Pahnke J (2004) The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimers disease. Curr Alzheimer Res 1:121–125. doi:10.2174/1567205043332225

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Breier A, Gibalova L, Seres M, Barancik M, Sulova Z (2013) New Insight into P-glycoprotein as a drug target. Anti-Cancer Agent Med Chem 13:159–170. doi:10.2174/187152013804487380

    CAS  Google Scholar 

  40. Bauer Br, Yang X, Hartz AMS, Olson ER, Zhao R, Kalvass JC, Pollack GM, Miller DS (2006) In vivo activation of human pregnane X receptor tightens the blood–brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol 70:1212–1219. doi:10.1124/mol.106.023796

    PubMed  CAS  Google Scholar 

  41. Ott M, Fricker G, Bauer Br (2009) Pregnane X receptor (PXR) regulates P-glycoprotein at the blood–brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther 329:141–149. doi:10.1124/jpet.108.149690

    PubMed  CAS  Google Scholar 

  42. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR (2003) Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 331:815–828. doi:10.1016/S0022-2836(03)00795-2

    PubMed  CAS  Google Scholar 

  43. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590. doi:10.1038/87912

    PubMed  CAS  Google Scholar 

  44. Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, Tomkinson NCO, LeCluyse EL, Lambert MH, Willson TM (2000) The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14:27–39. doi:10.4155/fmc.10.276

    PubMed  CAS  Google Scholar 

  45. Tarcsay Á, Keseru GM (2011) Homology modeling and binding site assessment of the human P-glycoprotein. Future Med Chem 3:297–307. doi:10.4155/fmc.10.276

    PubMed  CAS  Google Scholar 

  46. Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, Redinbo MR (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333. doi:10.1126/science.1060762

    PubMed  CAS  Google Scholar 

  47. Watkins RE, Maglich JM, Moore LB, Wisely GB, Noble SM, Davis-Searles PR, Redinbo MR (2003) 2.1 Å crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42:1430–1438. doi:10.1021/bi0268753

    PubMed  CAS  Google Scholar 

  48. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR (2003) Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 331:815–828. doi:10.1016/S0022-2836(03)00795-2

    PubMed  CAS  Google Scholar 

  49. Chang G, Roth CB (2001) Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800. doi:10.1126/science.293.5536.1793

    PubMed  CAS  Google Scholar 

  50. Dawson RJP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. doi:10.1038/nature05155

    PubMed  CAS  Google Scholar 

  51. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi:10.1126/science.1168750

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569. doi:10.1038/nature11448

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Prajapati R, Singh U, Patil A, Khomane KS, Bagul P, Bansal AK, Sangamwar AT (2013) In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies. J Comput Aided Mol Des 27:347–363. doi:10.1007/s10822-013-9650-x

    PubMed  CAS  Google Scholar 

  54. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR (2003) Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 331:815–828. doi:10.1016/S0022-2836(03)00795-2

    PubMed  CAS  Google Scholar 

  55. Watkins RE, Maglich JM, Moore LB, Wisely GB, Noble SM, Davis-Searles PR, Lambert MH, Kliewer SA, Redinbo MR (2003) 2.1 Å crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42:1430–1438. doi:10.1021/bi0268753

    PubMed  CAS  Google Scholar 

  56. Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, Willson TM, Kliewer SA, Redinbo MR (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333. doi:10.1126/science.1060762

    PubMed  CAS  Google Scholar 

  57. Loo TW, Bartlett MC, Clarke DM (2003) Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. J Biol Chem 278:13603–13606. doi:10.1074/jbc.C300073200

    PubMed  CAS  Google Scholar 

  58. Callaghan R, Ford RC, Kerr ID (2006) The translocation mechanism of P-glycoprotein. FEBS Lett 580:1056–1063. doi:10.1016/j.febslet.2005.11.083

    PubMed  CAS  Google Scholar 

  59. Constantinides PP, Wasan KM (2007) Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (Pgp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci 96:235–248. doi:10.1002/jps.20780

    PubMed  CAS  Google Scholar 

  60. Aisen PS (1996) Inflammation and Alzheimer disease. Mol Chem Neuropathol 28:83–88. doi:10.1007/BF02815208

    PubMed  CAS  Google Scholar 

  61. Leung R, Proitsi P, Simmons A, Lunnon K, Gntert A, Kronenberg D, Pritchard M, Tsolaki M, Mecocci P, Kloszewska I (2013) Inflammatory proteins in plasma are associated with severity of Alzheimers disease. PLoS One 8:649–671. doi:10.1371/journal.pone.0064971

    Google Scholar 

  62. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL (2000) Inflammation and Alzheimers disease. Neurobiol Aging 21:383–421. doi:10.1016/S0197-4580(00)00124-X

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ (2007) Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kB target gene expression. Am J Physiol Gastrointest Liver Physiol 292:G1114–G1122. doi:10.1152/ajpgi.00528.2006

    PubMed  CAS  Google Scholar 

  64. Langmade SJ, Gale SE, Frolov A, Mohri I, Suzuki K, Mellon SH, Walkley SU, Covey DF, Schaffer JE, Ory DS (2006) Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann–Pick C disease. Proc Natl Acad Sci USA 103:13807–13812. doi:10.1073/pnas.0606218103

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Wolf A, Bauer B, Hartz AMS (2012) ABC transporters and the Alzheimer’s disease enigma. Front Psychiatry 3:1–14. doi:10.3389/fpsyt.2012.00054

    Google Scholar 

  66. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602. doi:10.1038/nrn1728

    PubMed  Google Scholar 

  67. Enokizono J, Kusuhara H, Sugiyama Y (2007) Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 72:967–975. doi:10.1124/mol.107.034751

    PubMed  CAS  Google Scholar 

  68. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127. doi:10.2217/14622416.9.1.105

    PubMed  CAS  Google Scholar 

  69. Eid SY, El-Readi MZ, Wink M (2012) arotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters. Phytomedicine 19:977–987. doi:10.1016/j.phymed.2012.05.010

    PubMed  CAS  Google Scholar 

  70. E-j Wang, Lew K, Casciano CN, Clement RP, Johnson WW (2002) Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chem 46:160–165. doi:10.1128/AAC.46.1.160-165.2002

    Google Scholar 

  71. Maitrejean M, Comte G, Barron D, El Kirat K, Di Pietro A (2000) The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett 10:157–160. doi:10.1016/S0960-894X(99)00636-8

    PubMed  CAS  Google Scholar 

  72. Kis E, Nagy T, Jani M, Molnár E, Jánossy J, Ujhellyi O, Német K, Herédi-Szabó K, Krajcsi P (2009) Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis 68:1201–1207. doi:10.1136/ard.2007.086264

    PubMed  CAS  Google Scholar 

  73. Nabekura T, Yamaki T, Ueno K, Kitagawa S (2008) Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother Pharmacol 62:867–873. doi:10.1007/s00280-007-0676-4

    PubMed  CAS  Google Scholar 

  74. El-Readi MZ, Hamdan D, Farrag N, El-Shazly A, Wink M (2010) Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur J Pharmacol 626:139–145. doi:10.1016/j.ejphar.2009.09.040

    PubMed  CAS  Google Scholar 

  75. von Moltke LL, Weemhoff JL, Perloff MD, Hesse LM, Harmatz JS, Roth-Schechter BF, Greenblatt DJ (2002) Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein. Biopharm Drug Dispos 23:361–367. doi:10.1002/bdd.329

    Google Scholar 

  76. Hennessy M, Kelleher D, Spiers JP, Barry M, Kavanagh P, Back D, Mulcahy F, Feely J (2002) St John’s Wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol 53:75–82. doi:10.1046/j.0306-5251.2001.01516.x

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Perloff MD, Von Moltke LL, Stormer E, Shader RI, Greenblatt DJ (2001) Saint John’s wort: an in vitro analysis of P-glycoprotein induction due to extended exposure. Br J Pharmacol 134:1601–1608. doi:10.1038/sj.bjp.0704399

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Ott M, Huls M, Cornelius M, Fricker G (2010) St. John’s wort constituents modulate P-glycoprotein transport activity at the blood–brain barrier. Pharm Res 27:811–822. doi:10.1007/s11095-010-0074-1

    PubMed  CAS  Google Scholar 

  79. Fromm MF (2004) Importance of P-glycoprotein at blood–tissue barriers. Trends Pharmacol Sci 25:423–429. doi:10.1016/j.tips.2004.06.002

    PubMed  CAS  Google Scholar 

  80. Shen X, Chen G, Zhu G, Fong W-F (2006) (\(\pm \))-3\(^\prime \)-O,4\(^\prime \)-O-dicynnamoyl-cis-khellactone, a derivative of (\(\pm )\)-praeruptorin A, reverses P-glycoprotein mediated multidrug resistance in cancer cells. Bioorg Med Chem Lett 14:7138–7145. doi: 10.1016/j.bmc.2006.06.066

    CAS  Google Scholar 

  81. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, Borst P, Nooijen WJ, Beijnen JH, Van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci India A/B 94:2031–2035

    CAS  Google Scholar 

  82. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302:645–650. doi:10.1124/jpet.102.034728

    PubMed  CAS  Google Scholar 

  83. Polli JW, Jarrett JL, Studenberg SD, Humphreys JE, Dennis SW, Brouwer KR, Woolley JL (1999) Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 16:1206–1212. doi:10.1023/A:1018941328702

    PubMed  CAS  Google Scholar 

  84. Wang E-j, Barecki-Roach M, Johnson WW (2004) Quantitative characterization of direct P-glycoprotein inhibition by St John’s wort constituents hypericin and hyperforin. J Pharm Pharmacol 56:123–128. doi:10.1211/0022357022395

  85. Potschka H, Fedrowitz M, Loscher W (2001) P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 12:3557 –3560

  86. Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y (2009) Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 100:1701–1707. doi:10.1111/j.1349-7006.2009.01213.x

    PubMed  CAS  Google Scholar 

  87. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    PubMed  CAS  Google Scholar 

  88. Yasuda K, Lan L-b, Sanglard D, Furuya K, Schuetz JD, Schuetz EG (2002) Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther 303:323–332. doi:10.1124/jpet.102.037549

  89. Perloff MD, Stormer E, von Moltke LL, Greenblatt DJ (2003) Rapid assessment of P-glycoprotein inhibition and induction in vitro. Pharm Res 20:1177–1183. doi:10.1023/A:1025092829696

    PubMed  CAS  Google Scholar 

  90. Potschka H, Fedrowitz M, Loscher W (2002) P-glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–barrier: evidence from microdialysis experiments in rats. Neurosci Lett 327:173–176. doi:10.1016/S0304-3940(02)00423-8

    PubMed  CAS  Google Scholar 

  91. Robert J, Jarry C (2003) Multidrug resistance reversal agents. J Med Chem 46:4805–4817. doi:10.1021/jm030183a

    PubMed  CAS  Google Scholar 

  92. Relling MV (1996) Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs? Ther Drug Monit 18:350–356

    PubMed  CAS  Google Scholar 

  93. Wasserman L, Aviram R, Levavi H, Ovadia J, Shneyuor Y, Frisch A, Blau O, Beery E, Novogrodsky A, Nordenberg J (1992) A cell line with unusual characteristics from an ovarian carcinoma patient: modulation of sensitivity to antitumour drugs. Eur J Cancer 28:22–27. doi:10.1016/0959-8049(92)90376-D

    PubMed  CAS  Google Scholar 

  94. Schuetz EG, Beck WT, Schuetz JD (1996) Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 49:311–318

    PubMed  CAS  Google Scholar 

  95. Xin HW, Wu XC, Li Q, Yu AR, Zhu M, Shen Y, Su D, Xiong L (2007) Effects of Schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers. Br J Clin Pharmacol 64:469–475. doi:10.1111/j.1365-2125.2007.02922.x

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Kim RB (2002) Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54. doi:10.1081/DMR-120001389

    PubMed  CAS  Google Scholar 

  97. Dimitroulakos J, Yeger H (1996) HMG-CoA reductase mediates the biological effects of retinoic acid on human neuroblastoma cells: lovastatin specifically targets P-glycoprotein-expressing cells. Nat Med 2:326–333. doi:10.1038/nm0396-326

    PubMed  CAS  Google Scholar 

  98. Li D-Q, Wang Z-B, Bai J, Zhao J, Wang Y, Hu K, Du Y-H (2004) Reversal of multidrug resistance in drug-resistant human gastric cancer cell line SGC7901/VCR by antiprogestin drug mifepristone. World J Gastroenterol 10:1722–1725

    PubMed  CAS  Google Scholar 

  99. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD (2010) Transfer of bisphenol A across the human placenta. Am J Obstet Gynacol 202:393–397. doi:10.1016/j.ajog.2010.01.025

    Google Scholar 

  100. Ichikawa-Haraguchi M, Sumizawa T, Yoshimura A, Furukawa T, Hiramoto S, Sugita M (1993) Progesterone and its metabolites: the potent inhibitors of the transporting activity of P-glycoprotein in the adrenal gland. Biochim Biophys Acta 1158:201–208. doi:10.1016/0304-4165(93)90016-2

    PubMed  CAS  Google Scholar 

  101. Kivisto KT, Zukunft J, Hofmann U, Niemi M, Rekersbrink S, Schneider S, Luippold G, Schwab M, Eichelbaum M, Fromm MF (2004) Characterisation of cerivastatin as a P-glycoprotein substrate: studies in P-glycoprotein-expressing cell monolayers and mdr1a/b knock-out mice. Naunyn Schmiedebergs Arch Pharmacol 370:124–130. doi:10.1007/s00210-004-0948-z

    PubMed  Google Scholar 

  102. Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ, von Moltke LL (2004) Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm Drug Dispos 25:283–289. doi:10.1002/bdd.411

    PubMed  CAS  Google Scholar 

  103. Konings WN, Poelarends GJ (2002) Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein. IUBMB Life 53:213–218. doi:10.1080/15216540212646

    PubMed  CAS  Google Scholar 

  104. Susanto M, Benet LZ (2002) Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm Res 19:457–462. doi:10.1023/A:1015191511817

    PubMed  CAS  Google Scholar 

  105. X-f Zhou, Zhang L, Tseng E, Scott-Ramsay E, Schentag JJ, Coburn RA, Morris ME (2005) New 4-aryl-1, 4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug Metab Dispos 33:321–328. doi:10.1124/dmd.104.00208

    Google Scholar 

  106. Wils P, Phung-Ba Vr, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, Scherman D (1994) Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 48:1528–1530. doi:10.1016/0006-2952(94)90580-0

  107. Aungst BJ (1999) P-glycoprotein, secretory transport, and other barriers to the oral delivery of anti-HIV drugs. Adv Drug Deliv Rev 39:105–116. doi:10.1016/S0169-409X(99)00022-8

    PubMed  CAS  Google Scholar 

  108. Lentz K, Polli J, Wring S, Humphreys J, Polli J (2000) Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 17:1456–1460. doi:10.1023/a:1007692622216

    PubMed  CAS  Google Scholar 

  109. Bain LJ, Leblanc GA (1996) Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol Appl Pharm 141:288–298. doi:10.1006/taap.1996.0286

    CAS  Google Scholar 

  110. Barnes KM, Dickstein B, Cutler GB, Fojo T, Bates SE (1996) Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 35:4820–4827. doi:10.1021/bi952380k

    PubMed  CAS  Google Scholar 

  111. Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–796. doi:10.1124/jpet.109.162321

    PubMed  CAS  Google Scholar 

  112. Holtzman CW, Wiggins BS, Spinler SA (2006) Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 26:1601–1607. doi:10.1592/phco.26.11.1601

    PubMed  CAS  Google Scholar 

  113. Najar IA, Sachin BS, Sharma SC, Satti NK, Suri KA, Johri RK (2010) Modulation of P-glycoprotein ATPase activity by some phytoconstituents. Phytother Res 24:454–458. doi:10.1002/ptr.2951

    PubMed  CAS  Google Scholar 

  114. Sreeramulu K, Liu R, Sharom FJ (2007) Interaction of insecticides with mammalian P-glycoprotein and their effect on its transport function. Biochim Biophys Acta 1768:1750–1757. doi:10.1016/j.bbamem.2007.04.001

    PubMed  CAS  Google Scholar 

  115. Frohlich M, Albermann N, Sauer A, Walter-Sack I, Haefeli WE, Weiss J (2004) In vitro and ex vivo evidence for modulation of P-glycoprotein activity by progestins. Biochem Pharmacol 68:2409–2416. doi:10.1016/j.bcp.2004.08.026

    PubMed  Google Scholar 

  116. Shabbir A, DiStasio S, Zhao J, Cardozo CP, Wolff MS, Caplan AJ (2005) Differential effects of the organochlorine pesticide DDT and its metabolite p,p \(^{\prime }\)-DDE on p-glycoprotein activity and expression. Toxicol Appl Pharm 203:91–98. doi: 10.1016/j.taap.2004.07.011

    CAS  Google Scholar 

  117. Gosland M, Tsuboi C, Hoffman T, Goodin S, Vore M (1993) 17\(\beta \)-Estradiol glucuronide: an inducer of cholestasis and a physiological substrate for the multidrug resistance transporter. Cancer Res 53:5382–5385

    PubMed  CAS  Google Scholar 

  118. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236. doi:10.1038/nrd3028

    PubMed  CAS  Google Scholar 

  119. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2000) Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res 17:1189–1197. doi:10.1023/A:1007568811691

    PubMed  CAS  Google Scholar 

  120. Wu X, Whitfield LR, Stewart BH (2000) Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res 17:209–215. doi:10.1023/A:1007525616017

    PubMed  CAS  Google Scholar 

  121. E-j Wang, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW (2001) Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol 14:1596–1603. doi:10.1021/tx010125x

  122. Lanning CL (1996) Chlorpyrifos oxon interacts with the mammalian multidrug resistance protein, P-glycoprotein. J Toxicol Environ Health 47:95–407. doi:10.1080/009841096161726

  123. Boyd RA, Stern RH, Stewart BH, Wu X, Reyner EL, Zegarac EA, Randinitis EJ, Whitfield L (2000) Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein mediated secretion. J Clin Pharmacol 40:91–98. doi:10.1177/009127000004000112

    PubMed  CAS  Google Scholar 

  124. Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PKE, Wadelius C (2003) Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 4:40–48. doi:10.1038/sj.tpj.6500220

    Google Scholar 

  125. Zhang J, Huang M, Guan S, Bi H-C, Pan Y, Duan W, Chan SY, Chen X, Hong Y-H, Bian J-S (2006) A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J Pharmacol Exp Ther 317:1285–1294. doi:10.1124/jpet.105.10070

    PubMed  CAS  Google Scholar 

  126. Buss DS, McCaffery AR, Callaghan A (2002) Evidence for p-glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex. Med Vet Entomol 16:218–222. doi:10.1046/j.1365-2915.2002.00365.x

    PubMed  CAS  Google Scholar 

  127. Eufemia NA, Epel D (2000) Induction of the multixenobiotic defense mechanism (MXR), P-glycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses. Aquat Toxicol 49:89–100. doi:10.1016/S0166-445X(99)00068-5

    PubMed  CAS  Google Scholar 

  128. Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC (2004) P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate 59:77–90. doi:10.1002/pros.10354

    PubMed  CAS  Google Scholar 

  129. Wang EJ, Casciano CN, Clement RP, Johnson WW (2001) HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 18:800–806. doi:10.1023/A:1011036428972

    PubMed  CAS  Google Scholar 

  130. Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, Murakami T (1998) Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmcol 358:289–294. doi:10.1016/S0014-2999(98)00607-4

    CAS  Google Scholar 

  131. El-Readi MZ, Hamdan D, Farrag N, El-Shazly A, Wink M (2010) Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur J Pharmcol 626:139–145. doi:10.1016/j.ejphar.2009.09.040

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT), India.

Conflict of interest

The author declares no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay T. Sangamwar.

Additional information

Sumit Jain, Vijay Rathod and Rameshwar Prajapati have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 99.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Rathod, V., Prajapati, R. et al. Pregnane X Receptor and P-glycoprotein: a connexion for Alzheimer’s disease management. Mol Divers 18, 895–909 (2014). https://doi.org/10.1007/s11030-014-9550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9550-6

Keywords

Navigation