Skip to main content
Log in

Negishi coupling: an easy progress for C–C bond construction in total synthesis

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Negishi cross-coupling reactions were used extensively in total synthesis. The expansion of substrate scope, the development of mild reaction conditions, the advancement of the methods to improve the stereo- and regio-selectivity of carbon–carbon bond formation, the maturity of a large number of sequential processes, and the development of non-toxic reactions signify the importance of Negishi coupling. The following review illustrates a strategic role of this reaction in constructing carbon–carbon bonds in the recent total synthesis of natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Fig. 4
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonate

Bn:

Benzyl

Boc:

\(t\)-Butyloxycarbonyl

CNS:

Central nervous system

COD:

1,5-Cyclooctadiene

Cp:

Cyclopentadienyl

dba:

Dibenzylidenacetone

dppf:

\(1{,}1^{\prime }\)-Bis(diphenylphosphino)ferrocene

glyme:

1,2-Dimethoxyethane

DMA:

Dimethylacetamide

DMF:

Dimethylformamide

DMPU:

\(N{,}N^{\prime }\)-dimethyl-\(N,N^{\prime }\)-trimethyleneurea

DMS \(=\) DPEphos:

Bis(2-diphenylphosphinophenyl)ether

Fmoc:

9-Fluorenylmethoxycarbonyl

HMDS:

Hexamethyldisilazide

IBAO:

Isobutylaluminoxane

LDA:

Lithium diisopropylamide

MOM:

Methoxymethyl

Ni:

Nickle

nmi:

1-Neomenthylindenyl

NMP:

\(N\)-methylpyrrolidone

Pd:

Palladium

PEPPSITM-IPr:

Pyridine-enhanced precatalyst preparation, stabilization and initiation-diisopropylphenylimidazolium derivative

PMB:

\(p\)-Methoxybenzyl

Pybox:

2,6-Bis[(4\(R\))-4-phenyl-2-oxazolinyl] pyridine

SEM:

2-Trimethylsilylethoxymethoxy

TBAF:

Tetra-\(n\)-butylammonium fluoride

TBDPS:

\(t\)-Butyldiphenylsilyl

TBME:

\(tert\)-Butylmethylether

TBS:

\(tert\)-Butyl-dimethylsilyl

tBu-Terpy:

4,\(4^\prime {,}4^{\prime \prime }\)-Tri-\(tert\)-butyl-2,\(2{^\prime }\):\(6^{\prime }\),\(2^{\prime }\)- terpyridine

Tf:

Triflate

tfp:

Tri(2-furyl)phosphane

THF:

Tetrahydrofuran

TIPS:

Triisopropylsilyl

TMS:

Tetramethylsilane

tol:

Tolyl

YS:

Yellow substance

References

  1. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489. doi:10.1002/anie.200500368

    Article  CAS  Google Scholar 

  2. Negishi E, King AO, Okukado N (1977) Selective carbon–carbon bond formation via transition metal catalysis. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J Org Chem 42:1821–1823. doi:10.1021/jo00430a041

    Article  CAS  Google Scholar 

  3. Milstein D, Stille JK (1978) A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc 100:3636–3638. doi:10.1021/ja00479a077

    Article  CAS  Google Scholar 

  4. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440. doi:10.1016/S0040-4039(01)95429-2

    Google Scholar 

  5. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492. doi:10.1021/cr100327p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Negishi E (2011) Magical power of transition metals: past, present, and future (Nobel Lecture). Angew Chem Int Ed 50:6738–6764. doi:10.1002/anie.201101380

    Article  CAS  Google Scholar 

  7. Nakamura I, Yamamoto Y (2004) Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem Rev 104:2127–2198. doi:10.1021/cr020095i

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew Chem Int Ed 50:6722–6737. doi:10.1002/anie.201101379

    Article  CAS  Google Scholar 

  9. Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. doi:10.1002/anie.200806273

    Article  CAS  Google Scholar 

  10. Lessene G (2004) Advances in the Negishi coupling. Aust J Chem 57:107. doi:10.1071/CH03225

    Article  CAS  Google Scholar 

  11. Tamao K, Sumitani K, Kumada M (1972) Selective carbon–carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel–phosphine complexes. J Am Chem Soc 94:4374–4376. doi:10.1021/ja00767a075

    Article  CAS  Google Scholar 

  12. Tamao K (2002) Discovery of the cross-coupling reaction between Grignard reagents and C(\(\text{ sp }^{2}\)) halides catalyzed by nickel–phosphine complexes. J Organomet Chem 653:23–26. doi:10.1016/S0022-328X(02)01159-2

    Google Scholar 

  13. Corriu RJP, Masse JP (1972) Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J Chem Soc Chem Commun 3:144. doi:10.1039/C3972000144A

    Article  Google Scholar 

  14. Arp FO, Fu GC (2005) Catalytic enantioselective Negishi reactions of racemic secondary benzylic halides. J Am Chem Soc 127:10482–10483. doi:10.1021/ja053751f

    Article  CAS  PubMed  Google Scholar 

  15. Phapale VB, Bunuel E, Garca-Iglesias M, Cardenas D (2007) Ni-catalyzed cascade formation of C(\(\text{ sp}^{3}\))–C(\(\text{ sp}^{3}\)) bonds by cyclization and cross-coupling reactions of Iodoalkanes with alkyl zinc halides. J Angew Chem Int Ed 46:8790–8795. doi:10.1002/anie.200702528

    Google Scholar 

  16. Kondakov DY, Negishi E (1995) Zirconium-catalyzed enantioselective methylalumination of monosubstituted alkenes. J Am Chem Soc 117:10771–10772. doi:10.1021/ja00148a031

    Article  CAS  Google Scholar 

  17. Kondakov DY, Negishi E (1996) Zirconium-catalyzed enantioselective alkylalumination of monosubstituted alkenes proceeding via noncyclic mechanism. J Am Chem Soc 118:1577–1578. doi:10.1021/ja953655m

    Article  CAS  Google Scholar 

  18. Heravi MM, Zadsirjan V (2013) Oxazolidinones as chiral auxiliaries in asymmetric aldol reactions applied to total synthesis. Tetrahedron Asymmetry 24:1149–1188. doi:10.1016/j.tetasy.2013.08.011

  19. Heravi MM, Asadi S (2013) Recent progress in asymmetric Biginelli reaction. Mol Divers 17:389–407. doi:10.1007/s11030-013-9439-9

    Google Scholar 

  20. Heravi MM, Faghihi Z (2012) McMurry coupling of aldehydes and ketones for the formation of heterocyles via olefination. Curr Org Chem 16:2097–2123. doi:10.2174/138527212803532404

    Google Scholar 

  21. Heravi MM, Asadi S (2012) Recent applications of organocatalysts in asymmetric aldol reactions. Tetrahedron Asymmetry 23: 1431–1465. doi:10.1016/j.tetasy.2012.10.002

    Google Scholar 

  22. Heravi MM, Fazeli A (2010) Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles 81:1979–2026. doi:10.3987/REV-10-677

    Article  CAS  Google Scholar 

  23. Heravi MM, Sadjadi S (2009) Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron 65:7761–7775. doi:10.1016/j.tet.2009.06.028

    Article  CAS  Google Scholar 

  24. Heravi MM, Hajiabbasi P (2010) Recent advances in Kumada–Tamao–Corriu cross-coupling reaction catalyzed by different ligands. Monatsh Chem 143:1575–1592. doi:10.1007/s00706-012-0838-x

    Google Scholar 

  25. Heravi MM, Hashemi E (2012) Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh Chem 143:861–880. doi:10.1007/s00706-012-0746-0

    Article  CAS  Google Scholar 

  26. Heravi MM, Hashemi E (2012) Recent applications of the Suzuki reaction in total synthesis. Tetrahedron 68:9145–9178. doi:10.1016/j.tet.2012.08.058

    Article  CAS  Google Scholar 

  27. Heravi MM, Hashemi E, Ghobadi N (2013) Development of recent total syntheses based on the Heck reaction. Curr Org Chem 17:2192–2224. doi:10.2174/13852728113179990032

    Article  CAS  Google Scholar 

  28. Heravi MM, Hashemi E, Azimian F (2013) Recent developments of the Stille reaction as a revolutionized method in total synthesis. Tetrahedron. doi:10.1016/j.tet.2013.07.108

  29. Wu J, Panek JS (2011) Total synthesis of (\(-\))-virginiamycin \(\text{ M }_{2}\): application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si–H insertion. J Org Chem 76:9900–9918. doi: 10.1021/jo202119p

    Article  CAS  PubMed  Google Scholar 

  30. Ammer C, Bach T (2010) Total syntheses of the thiopeptides amythiamicin C and D. Chem Eur J 16:14083–14093. doi:10.1002/chem.201002144

    Article  CAS  PubMed  Google Scholar 

  31. Skepper CK, Quach T, Molinski TF (2010) Total synthesis of enigmazole A from Cinachyrella enigmatica. Bidirectional bond constructions with an ambident 2,4-disubstituted oxazole synthon. J Am Chem Soc 132:10286–10292. doi:10.1021/ja1016975

    Article  CAS  PubMed  Google Scholar 

  32. Donohoe TJ, Ironmonger A, Kershaw NM (2008) Synthesis of (\(-\))-(\(Z\))-deoxypukalide. Angew Chem Int Ed 47:7314–7316. doi: 10.1002/anie.200802703

    Article  CAS  Google Scholar 

  33. Lee J, Panek JS (2009) Total synthesis of brevisamide. Org Lett 11:4390–4393. doi:10.1021/ol901801h

    Article  CAS  PubMed  Google Scholar 

  34. Bonazzi S, Eidam O, Guttinger S, Wach J-Y, Zemp I, Kutay U, Gademann K (2010) Anguinomycins and derivatives: total syntheses, modeling, and biological evaluation of the inhibition of nucleocytoplasmic transport. J Am Chem Soc 132:1432–1442. doi:10.1021/ja9097093

    Article  CAS  PubMed  Google Scholar 

  35. Delgado O, Muller HM, Bach T (2008) Concise total synthesis of the thiazolyl peptide antibiotic GE2270 A. Chem Eur J 14: 2322–2339. doi:10.1002/chem.200701823

    Google Scholar 

  36. Sicre C, Cid MM (2005) Convergent stereoselective synthesis of the visual pigment A2E. Org Lett 7:5737–5739. doi:10.1021/ol052512u

    Article  CAS  PubMed  Google Scholar 

  37. Oliveira JM, Zeni G, Malvestiti I, Menezes PH (2006) Total synthesis of 1-(\(Z\))-atractylodinol. Tetrahedron Lett 47:8183–8185. doi: 10.1016/j.tetlet.2006.08.130

    Article  CAS  Google Scholar 

  38. Wang G, Yin N, Negishi E (2011) Highly stereoselective total synthesis of fully hydroxy-protected mycolactones A and B and their stereoisomerization upon deprotection. Chem Eur J 17:4118–4130. doi:10.1002/chem.201002627

    Google Scholar 

  39. Huang Z, Negishi E (2007) Highly stereo- and regioselective synthesis of (\(Z\))-trisubstituted alkenes via 1-bromo-1-alkyne hydroboration-migratory insertion-Zn-promoted iodinolysis and Pd-catalyzed organozinc cross-coupling. J Am Chem Soc 129:14788–14792. doi: 10.1021/ja0772039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ramharter J, Mulzer J (2012) From planning to optimization: total synthesis of valerenic acid and some bioactive derivatives. Eur J Org Chem 2012:2041–2053. doi:10.1002/ejoc.201101834

    Article  CAS  Google Scholar 

  41. Manabe A, Ohfune Y, Shinada T (2012) Stereoselective total syntheses of insect juvenile hormones JH 0 and JH I. Synlett 23: 1213–1216. doi:10.1055/s-0031-1290803

    Google Scholar 

  42. Bhuniya R, Nanda S (2013) Asymmetric total synthesis of (\(-\))-rasfonin. Tetrahedron 69:1153–1165. doi: 10.1016/j.tet.2012.11.051

    Article  CAS  Google Scholar 

  43. Fuchs M, Toesch M, Schober M, Wuensch C, Faber K (2013) Chemoenzymatic asymmetric total synthesis of (\(R\))-lasiodiplodin methyl ether through a sulfatase-based deracemization process. Eur J Org Chem 2013:356–361. doi: 10.1002/ejoc.201201296

    Article  CAS  Google Scholar 

  44. Hoecker J, Gademann K (2013) Enantioselective total syntheses and absolute configuration of JBIR-02 and Mer-A2026B. Org Lett 15:670–673. doi:10.1021/ol303502a

    Article  CAS  PubMed  Google Scholar 

  45. Torssell S, Wanngren E, Somfai P (2007) Total synthesis of (\(-\))-stemoamide. J Org Chem 72:4246–4249. doi: 10.1021/jo070498o

    Article  CAS  PubMed  Google Scholar 

  46. Inoue M, Yokota W, Katoh T (2007) Enantioselective total synthesis of (+)-scyphostatin, a potent and specific inhibitor of neutral sphingomyelinase. Synthesis 4:0622–0637. doi:10.1055/s-2007-965893

    Google Scholar 

  47. Liu Z, Wang Z, Yoon G, Cheon SH (2011) Stereoselective total synthesis of (+)-licochalcone E. Arch Pharm Res 34:1269–1276. doi:10.1007/s12272-011-0805-9

    Article  CAS  PubMed  Google Scholar 

  48. Sun X-Y, Tian X-Y, Li Z-W, Peng X-S, Wong H (2011) Total synthesis of plakortide E and biomimetic synthesis of plakortone B. Chem Eur J 17:5874–5880. doi:10.1002/chem.201003309

    Article  CAS  PubMed  Google Scholar 

  49. Espejo VR, Rainier JD (2010) Total synthesis of kapakahine E and F. Org Lett 12:2154–2157. doi:10.1021/ol100672z

    Article  CAS  PubMed  Google Scholar 

  50. Wehlan H, Jezek E, Lebrasseur N, Pave G, Roulland E, White A, Burrows JN, Barrett A (2006) Studies on the total synthesis of lactonamycin: synthesis of the CDEF ring system. J Org Chem 71:8151–8158. doi:10.1021/jo0613378

    Article  CAS  PubMed  Google Scholar 

  51. Sato H, Sato K, Iida M, Yamanaka H, Oishi T, Chida N (2008) Total synthesis of mycestericin A. Tetrahedron Lett 49:1943–1947. doi:10.1016/j.tetlet.2008.01.105

    Article  CAS  Google Scholar 

  52. Yamanaka H, Sato K, Sato H, Iida M, Oishi T, Chida N (2009) Total synthesis of mycestericin A and its 14-epimer. Tetrahedron 65:9188–9201. doi:10.1016/j.tet.2009.09.012

    Article  CAS  Google Scholar 

  53. Barker G, McGrath JL, Klapars A, Stead D, Zhou G, Campos KR, Obrien P (2011) Enantioselective, palladium-catalyzed \(\alpha \)-arylation of N-boc pyrrolidine: in situ react IR spectroscopic monitoring, scope, and synthetic applications. J Org Chem 76:5936–5953. doi: 10.1021/jo2011347

    Article  CAS  PubMed  Google Scholar 

  54. Jacobsen MF, Moses JE, Adlington RM, Baldwin JE (2006) The biomimetic synthesis of SNF4435C and SNF4435D, and the total synthesis of the polyene metabolites aureothin, \(N\)-acetyl-aureothamine and spectinabilin. Tetrahedron 62:1675–1689. doi: 10.1016/j.tet.2005.11.058

    Article  CAS  Google Scholar 

  55. Kim S-G, Kim J, Jung H (2005) Efficient total synthesis of (+)-curcuphenol via asymmetric organocatalysis. Tetrahedron Lett 46:2437–2439. doi:10.1016/j.tetlet.2005.02.047

    Article  CAS  Google Scholar 

  56. Bremond P, Vanthuyne N, Audran G (2009) Synthesis of (+)-striatene: confirmation of its stereostructure. Tetrahedron Lett 50:5723–5725. doi:10.1016/j.tetlet.2009.07.138

    Article  CAS  Google Scholar 

  57. Kutsumura N, Kiriseko A, Saito T (2012) First total synthesis of (+)-heteroplexisolide E. Tetrahedron Lett 53:3274–3276. doi:10.1016/j.tetlet.2012.04.065

    Article  CAS  Google Scholar 

  58. Yao Y-S, Yao Z-J (2008) Biomimetic total syntheses of cassiarins A and B. J Org Chem 73:5221–5225. doi:10.1021/jo801017b

    Article  CAS  PubMed  Google Scholar 

  59. Furstner A, Bonnekessel M, Blank JT, Radkowski K, Seidel G, Lacombe F, Gabor B, Mynott R (2007) Total synthesis of myxovirescin \(A_{1}\). Chem Eur J 13:8762–8783. doi: 10.1002/chem.200700926

    Article  PubMed  Google Scholar 

  60. Jian Y-J, Tang C-J, Wu Y (2007) Enantioselective total synthesis of phomallenic acid C. J Org Chem 72:4851–4855. doi:10.1021/jo070559i

    Article  CAS  PubMed  Google Scholar 

  61. Dassonneville B, Witulski B, Detert H (2011) [2+2+2] Cycloadditions of alkynylynamides: a total synthesis of perlolyrine and the first total synthesis of “isoperlolyrine”. Eur J Org Chem 2011: 2836–2844. doi:10.1002/ejoc.201100121

  62. O’Keefe BM, Simmons N, Martin SF (2011) Facile access to sterically hindered aryl ketones via carbonylative cross-coupling: application to the total synthesis of luteolin. Tetrahedron 67:4344–4351. doi:10.1016/j.tet.2011.03.074

    Article  PubMed Central  PubMed  Google Scholar 

  63. Dai H-F, Chen W-X, Zhao L, Xiong F, Sheng H, Chen F-E (2008) Synthetic studies on (+)-biotin, Part 11: application of cinchona alkaloid-mediated asymmetric alcoholysis of meso-cyclic anhydride in the total synthesis of (+)-biotin. Adv Synth Catal 350:1635–1641. doi:10.1002/adsc.200800151

    Article  CAS  Google Scholar 

  64. Xiong F, Chen X-X, Chen FE (2010) An improved asymmetric total synthesis of (+)-biotin via the enantioselective desymmetrization of ameso-cyclic anhydride mediated by cinchona alkaloid-based sulfonamide. Tetrahedron Asymmetry 21:665–669. doi:10.1016/j.tetasy.2010.03.041

    Article  CAS  Google Scholar 

  65. Nakahata T, Fujimura S, Kuwahara S (2006) Total synthesis of pteridic acids A and B. Chem Eur J 12:4584–4593. doi:10.1002/chem.200600134

    Article  CAS  PubMed  Google Scholar 

  66. Son S, Fu GC (2008) Nickel-catalyzed asymmetric Negishi cross-couplings of secondary allylic chlorides with alkylzincs. J Am Chem Soc 130:2756–2757. doi:10.1021/ja800103z

    Article  CAS  PubMed  Google Scholar 

  67. Gong H, Gagne MR (2008) Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J Am Chem Soc 130:12177–12183. doi:10.1021/ja8041564

    Article  CAS  PubMed  Google Scholar 

  68. Lipshutz BH, Amorelli B (2009) Total synthesis of piericidin \(A_{1}\). application of a modified Negishi carboalumination-nickel-catalyzed cross-coupling. J Am Chem Soc 131:1396–1397. doi: 10.1021/ja809542r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Melzig L, Dennenwaldt T, Gavryushin A, Knochel P (2011) Direct aminoalkylation of arenes, heteroarenes, and alkenes via Ni-catalyzed Negishi cross-coupling reactions. J Org Chem 76:8891–8906. doi:10.1021/jo201630e

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt T, Kirschning A (2012) Total synthesis of carolacton: a highly potent biofilm inhibitor. Angew Chem Int Ed 51:1063–1066. doi:10.1002/anie.201106762

    Article  CAS  Google Scholar 

  71. Holub N, Neidhofer J, Blechert S (2005) Total synthesis of (+)- trans-195A. Org Lett 7:1227–1229. doi:10.1021/ol0474610

    Article  CAS  PubMed  Google Scholar 

  72. Tan Z, Negishi E (2004) An efficient and general method for the synthesis of alpha, omega-difunctional reduced polypropionates by Zr-catalyzed asymmetric carboalumination: synthesis of the scyphostatin side chain. Angew Chem Int Ed 43:2911– 2914

    Google Scholar 

  73. Huang Z, Tan Z, Novak T, Zhu G, Negishi E (2007) Zirconium-catalyzed asymmetric carboalumination of alkenes: ZACA-lipase-catalyzed acetylation synergy. Adv Synth Catal 349:539–545. doi:10.1002/adsc.200600548

    Article  CAS  Google Scholar 

  74. Liang B, Negishi E (2008) Highly efficient asymmetric synthesis of fluvirucinine \(A_{1}\) via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)-lipase-catalyzed acetylation tandem process. Org Lett 10:193–195. doi: 10.1021/ol702272d

    Article  CAS  PubMed  Google Scholar 

  75. Zhu G, Negishi E (2008) 1,4-Pentenyne as a five-carbon synthon for efficient and selective syntheses of natural products containing 2,4-dimethyl-1-penten-1,5-ylidene and related moieties by means of Zr-catalyzed carboalumination of alkynes and alkenes. Chem Eur J 14:311–318. doi:10.1002/chem.200701512

    Article  CAS  PubMed  Google Scholar 

  76. Zhu G, Negishi E (2007) Fully reagent-controlled asymmetric synthesis of (\(-\))-spongidepsin via the Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction). Org Lett 9:2771–2774. doi: 10.1021/ol0707259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Xu Z, Negishi E (2008) Efficient and stereoselective synthesis of yellow scale pheromone via alkyne haloboration, Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction), and Pd-catalyzed tandem Negishi coupling. Org Lett 10:4311–4314. doi:10.1021/ol8017566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zhu G, Liang B, Negishi E (2008) Efficient and selective synthesis of (\(S, R, R, S, R, S\))-4,6,8,10,16,18-hexamethyl-docosane via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction). Org Lett 10:1099–1101. doi: 10.1021/ol703056u

    Article  CAS  PubMed  Google Scholar 

  79. Pitsinos E, Athinaios N, Xu Z, Wang G, Negishi E (2010) Total synthesis of (+)-scyphostatin featuring an enantioselective and highly efficient route to the side-chain via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA). Chem Commun 46:2200–2202. doi:10.1039/b920261g

    Google Scholar 

  80. Liang B, Novak T, Tan Z, Negishi E (2006) Catalytic, efficient, and syn-selective construction of deoxypolypropionates and other chiral compounds via Zr-catalyzed asymmetric carboalumination of allyl alcohol. J Am Chem Soc 128:2770–2771. doi:10.1021/ja0530974

    Google Scholar 

  81. Wang G, Huang Z, Negishi E (2009) Highly stereoselective and efficient synthesis of \(\omega \)-heterofunctional di- and trienoic esters for Honor–Wadsworth–Emmons reaction via alkyne hydrozirconation and Pd-catalyzed alkenylation. Tetrahedron Lett 50:3220–3223. doi: 10.1016/j.tetlet.2009.02.023

    Article  CAS  Google Scholar 

  82. Novak T, Tan Z, Liang B, Negishi E (2005) All-catalytic, efficient, and asymmetric synthesis of \(\alpha, \omega \)-diheterofunctional reduced polypropionates via “One-Pot” Zr-catalyzed asymmetric carboalumination-Pd-catalyzed cross-coupling tandem process. J Am Chem Soc 127:2838–2839. doi: 10.1021/ja043534z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Alzahra Research Council for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid M. Heravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heravi, M.M., Hashemi, E. & Nazari, N. Negishi coupling: an easy progress for C–C bond construction in total synthesis. Mol Divers 18, 441–472 (2014). https://doi.org/10.1007/s11030-014-9510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9510-1

Keywords

Navigation