Skip to main content
Log in

Classification of Plasmodium falciparum glucose-6-phosphate dehydrogenase inhibitors by support vector machine

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) has been considered as a potential target for severe forms of anti-malaria therapy. In this study, several classification models were built to distinguish active and weakly active PfG6PD inhibitors by support vector machine method. Each molecule was initially represented by 1,044 molecular descriptors calculated by ADRIANA.Code. Correlation analysis and attribute selection methods in Weka were used to get the best reduced set of molecular descriptors, respectively. The best model (Model 2w) gave a prediction accuracy (Q) of 93.88 % and a Matthew’s correlation coefficient (MCC) of 0.88 on the test set. Some properties such as \(\sigma \) atom charge, \(\pi \) atom charge, and lone pair electronegativity-related descriptors are important for the interaction between the PfG6PD and the inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jortzik E, Mailu BM, Preuss J, Fischer M, Bode L, Rahlfs S, Becker K (2011) Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: a unique bifunctional enzyme from Plasmodium falciparum. Biochem J 436:641–650. doi:10.1042/BJ20110170

    Article  PubMed  CAS  Google Scholar 

  2. Hayden T (2006) Making inroads on malaria. Anal Chem 78:5252–5260. doi:10.1021/ac069431b

    Article  PubMed  CAS  Google Scholar 

  3. Preuss J, Maloney P, Peddibhotla S, Hedrick MP, Hershberger P, Gosalia P, Milewski M, Li YL, Sugarman E, Hood B, Suyama E, Nguyen K, Vasile S, Sergienko E, Mangravita-Novo A, Vicchiarelli M, McAnally D, Smith LH, Roth GP, Diwan J, Chung TD, Jortzik E, Rahlfs S, Becker K, Pinkerton AB, Bode L (2012) Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro. J Med Chem 55:7262–7272. doi:10.1021/jm300833h

    Article  PubMed  CAS  Google Scholar 

  4. Qidwai T, Jamal F (2012) Glucose-6-phosphate dehydrogenase deficiency by methylation mediated gene silencing provides resistance against falciparum malaria. Int J Pharm Bio Sci 3:284–292

    CAS  Google Scholar 

  5. NCBI. http://www.ncbi.nlm.nih.gov/pcassay/. Accessed March 2013

  6. Gupte RS, Ata H, Rawat D, Abe M, Taylor MS, Ochi R, Gupte SA (2011) Glucose-6-phosphate dehydrogenase is a regulator of vascular smooth muscle contraction. Antioxid Redox Signal 14:543–558. doi:10.1089/ars.2010.3207

    Article  PubMed  CAS  Google Scholar 

  7. Murambiwa P, Masola B, Govender T, Mukaratirwa S, Musabayane CT (2011) Anti-malarial drug formulations and novel delivery systems: a review. Acta Trop 118:71–79. doi:10.1016/j.actatropica.2011.03.005

    Article  PubMed  CAS  Google Scholar 

  8. Olliaro PL, Taylor WR (2004) Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: a review. J Postgrad Med 50:40–44

    PubMed  CAS  Google Scholar 

  9. PubChem. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=540269. Accessed March 2013

  10. Wang K, Hu X, Wang Z, Yan A (2012) Classification of acetylcholinesterase inhibitors and decoys by a support vector machine. Comb Chem High Throughput Screen 15:492–502. doi:10.2174/138620712800563891

    Article  PubMed  CAS  Google Scholar 

  11. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5–14. doi:10.1016/S0097-8485(01)00094-8

    Article  PubMed  CAS  Google Scholar 

  12. Yan A, Chong Y, Wang L, Hu X, Wang K (2011) Prediction of biological activity of aurora-a kinase inhibitors by multilinear regression analysis and support vector machine. Bioorg Med Chem Lett 21:2238–2243. doi:10.1016/j.bmcl.2011.02.110

    Article  PubMed  CAS  Google Scholar 

  13. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1007/BF00994018

    Google Scholar 

  14. Fernandez M, Caballero J, Fernandez L, Sarai A (2011) Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol Divers 15:269–289. doi:10.1007/s11030-010-9234-9

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez M, Caballero J, Fernandez L, Abreu JI, Acosta G (2008) Classification of conformational stability of protein mutants from 3D pseudo-folding graph representation of protein sequences using support vector machines. Proteins 70:167–175. doi:10.1002/prot.21524

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez M, Caballero J, Fernandez L, Abreu JI, Acosta G (2007) Classification of conformational stability of protein mutants from 2D graph representation of protein sequences using support vector machines. Mol Simul 33:889–896. doi:10.1080/08927020701377070

    Article  CAS  Google Scholar 

  17. Fernandez M, Fernandez L, Sanchez P, Caballero J, Acosta G (2008) Proteometric modelling of protein conformational stability using amino acid sequence autocorrelation vectors and genetic algorithm-optimised support vector machines. Mol Simul 34:857–872. doi:10.1080/08927020802301920

    Article  CAS  Google Scholar 

  18. Dong X, Jiang C, Hu H, Yan J, Chen J, Hu Y (2009) QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine. Eur J Med Chem 44:4090–4097. doi:10.1016/j.ejmech.2009.04.050

    Article  PubMed  CAS  Google Scholar 

  19. Yan A, Nie X, Wang K, Wang M (2013) Classification of aurora kinase inhibitors by self-organizing map (SOM) and support vector machine (SVM). Eur J Med Chem 61:73–83. doi:10.1016/j.ejmech.2012.06.037

  20. Tobita M, Nishikawa T, Nagashima R (2005) A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorg Med Chem Lett 15:2886–2890. doi:10.1016/j.bmcl.2005.03.080

    Article  PubMed  CAS  Google Scholar 

  21. Xuan S, Wu Y, Chen X, Liu J, Yan A (2013) Prediction of bioactivity of HIV-1 integrase ST inhibitors by multilinear regression analysis and support vector machine. Bioorg Med Chem Lett 23:1648–1655. doi:10.1016/j.bmcl.2013.01.081

    Article  PubMed  CAS  Google Scholar 

  22. Darnag R, Schmitzer A, Belmiloud Y, Villemin D, Jarid A, Chait A, Seyagh M, Cherqaoui D (2009) QSAR studies of HEPT derivatives using support vector machines. QSAR Comb Sci 28:709–718. doi:10.1002/qsar.200810166

    Article  CAS  Google Scholar 

  23. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004) Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci 44:1257–1266. doi:10.1021/ci049965i

    Article  PubMed  CAS  Google Scholar 

  24. ADRIANA. Code, Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.com/. Accessed March 2013

  25. Weka, Version 3.61. The University of Waikato Hamilton, New Zealand. http://www.cs.waikato.ac.nz/ml/weka/. Accessed March 2013

  26. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–68. doi:10.1007/BF00337288

    Article  Google Scholar 

  27. CORINA, version 3.2, Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.com/. Accessed March 2013

  28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. doi:10.1016/S0169-409X(00)00129-0

    Article  PubMed  CAS  Google Scholar 

  29. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. doi:10.1021/jm000942e

    Article  PubMed  CAS  Google Scholar 

  30. Miller KJ (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112:8533–8542. doi:10.1021/ja00179a044

    Article  CAS  Google Scholar 

  31. Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151–164. doi:10.1016/S0924-2031(99)00014-4

    Article  CAS  Google Scholar 

  32. Yan A, Gasteiger J (2003) Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 43:429–434. doi:10.1021/ci025590u

    Article  PubMed  CAS  Google Scholar 

  33. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:1–39. doi:10.1145/1961189.1961199

    Article  Google Scholar 

  34. Dogra SK. “Y Scrmabling” From QSAR World—A Strand Life Sciences Web Resource. http://www.qsarworld.com/qsar-statistics-y-scrambling.php/. Accessed March 2013

  35. Yan A (2006) Modeling of Gibbs energy of formation of organic compounds by linear and nonlinear methods. J Chem Inf Model 46:2299–2304. doi:10.1021/ci0600105

    Article  PubMed  CAS  Google Scholar 

  36. Ma SG, Dai Y (2011) Principal component analysis based methods in bioinformatics studies. Brief Bioinform 12:714–722. doi:10.1093/bib/bbq090

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (20975011) and “Chemical Grid Project” of Beijing University of Chemical Technology. We thank Molecular Networks GmbH, Erlangen, Germany for making the programs ADRIANA.Code, Corina, and SONNIA available for our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixia Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (SDF 1600kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Yan, A. Classification of Plasmodium falciparum glucose-6-phosphate dehydrogenase inhibitors by support vector machine. Mol Divers 17, 489–497 (2013). https://doi.org/10.1007/s11030-013-9447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9447-9

Keywords

Navigation