Skip to main content
Log in

High-loading polyglycerol supported reagents for Mitsunobu- and acylation-reactions and other useful polyglycerol derivatives

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

In this paper we present soluble dendritic polyglycerol (PG) supported reagents PG-DEAD, PG-PPh3, and PG-DCC as well as scavengers PG-carbonate, PG-carbazate, and PG-amine, which all have been synthesized in high overall conversions and yields using simple purification techniques. The supported reagents have been used simultaneously in Mitsunobu and acylation reactions. All polymeric reagents and scavengers can be removed by simple precipitation/filtration protocols to give chromatography-free products of high purity. In the course of the syntheses of the polymeric reagents three intermediates turned out to be precious polyglycerol derivatives: a mixed carbonate as an electrophilic derivative, polyglyceryl carbazate as a scavenger for carbonyl compounds, as well as polyglycerylamines as amino analogues of polyglycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

abs:

absolute

aq:

aqueous

Bn:

benzyl

DB:

degree of branching

DCC:

N,N′-dicyclohexyl carbodiimide

DCM:

dichloromethane

DCU:

N,N′-dicyclohexyl urea

DEAD:

diethylazodicarboxylate

DMAP:

N,N-dimethylaminopyridine

EDCI:

N-(3-dimethylaminopropyl)-N′-ethyl-carbodiimide

EDCU:

N-(3-dimethylaminopropyl)-N′-ethyl-urea

Fmoc:

fluorenylmethoxycarbonyl

IR:

infrared

MALDITOF:

matrix assisted LASER desorption ionization time of flight

MPEG:

monomethylated poly(ethylene glycol)

M n :

number–average molar mass

Ms:

mesyl, methansulfonyl

NBS:

N-bromosuccinimide

MWCO:

molecular weight cut-off

NMR:

nuclear magnetic resonance

p.a.:

pro analysi

PG:

polyglycerol

PS:

polystyrene

ROMP:

ring opening metathesis polymerization

sat:

saturated

THF:

tetrahydrofurane

TLC:

thin layer chromatography

Ts:

tosyl, p-toluenesulfonyl

References

  1. (a) Baxendale, I.R., Storer, R.I. and Ley, S.V., Supported reagents and scavengers in multi-step organic synthesis, in Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 53–136; (b) Ley, S.V., Baxendale, I.R., Bream, R.N., Jackson, P.S., Leach, A.G., Longbottom, D.A., Nesi, M., Scott, J.S., Storer, R.I. and Taylor, S.J., Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation, J. Chem. Soc., Perkin Trans. 1 (2000) 3815–4195.

  2. (a) Kirschning, A., Monenschein, H. and Wittenberg, R., Funktionalisierte Polymere – zukunftsträchtige Werkzeuge für die Chemie in Lösung und die automatisierte Parallelsynthese, Angew. Chem., 113 (2001) 670–701; (b) Bhattacharya, S., Polymer-Supported Reagents and Catalysts: Recent Advances in Synthetic Applications, Comb. Chem. High Throughput Screening, 3 (2000) 65–92; (c) Bhattacharyya, S., Polymer-assisted solution-phase organic synthesis: Advances in multi-step synthetic applications, Indian J. Chem., Sect. B, 40 (2001) 878–890; (d) Brümmer, O., Clapham, B. and Janda, K.D., Recent developments and applications of polymer-supported reagents in synthetic organic chemistry, Curr. Opin. Drug. Discov. Dev., 3 (2000) 462–473; (e) Flynn, D.L., Devraj, R.V. and Parlow, J.J., Recent advances in polymer-assisted solution-phase chemical library synthesis and purification, Curr. Opin. Drug. Discov. Dev., 1 (1998) 41–50; (f) Wipf, P., Synthetic aspects of combinatorial chemistry, Pharmaceutical News, 9 (2002) 157–169; (g) Smith, S.D. and Alexandratos, S.D., Ion-selective polymer-supported reagents, Solvent Extr. Ion Exchange, 18 (2000) 779–807.

  3. Haag, R., Dendrimers and hyperbranched polymers as high-loading supports for organic synthesis, Chem. Eur. J., 7 (2001) 327–335.

    Article  CAS  Google Scholar 

  4. Harwig, C.W., Gravert, D.J. and Janda, K.D., Soluble polymers: New options in both traditional and combinatorial synthesis, Chemtracts – Org. Chem., 12 (1999) 1–26.

    CAS  Google Scholar 

  5. Tzschucke, C.C., Markert, C., Bannwarth, W., Roller, S., Hebel, A. and Haag, R., Modern separation techniques for the efficient workup in organic synthesis, Angew. Chem. Int. Ed., 41 (2002) 3964–4001.

    CAS  Google Scholar 

  6. Barrett, A.G.M., Hopkins, B.T. and Köbberling, J., ROMPgel Reagents in Parallel Synthesis, Chem. Rev., 102 (2002) 3301–3324.

    Article  CAS  Google Scholar 

  7. (a) Dickerson, T.J., Reed, N.N. and Janda, K.D., Soluble polymers as scaffolds for recoverable catalysts and reagents, Chem. Rev., 102 (2002) 3325–3334; (b) Toy, P.H. and Janda, K.D., Soluble polymer-supported organic synthesis, Acc. Chem. Res., 33 (2000) 546–554; (c) Dickerson, T.J., Reed, N.N. and Janda, K.D., Soluble polymers as catalyst and reagent platforms: liquid-phase methodologies, In Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 241–276; (d) Wentworth Jr., P., Recent developments and applications of liquid-phase strategies in organic synthesis, Trends Biotechnol., 17 (1999) 448–452; (e) Bergbreiter, D.E., Polymer supports in organic catalysis and synthesis, Curr. Opin. Drug. Discov. Dev., 4 (2001) 736–744; (f) Bergbreiter, D.E., Alternative Polymer Supports for Organic Chemistry, Med. Res. Rev., 19 (1999) 439–450.

  8. Wentworth Jr., P. and Janda, K.D., Liquid-phase chemistry: Recent advances in soluble polymer-supported catalysts, reagents and synthesis, Chem. Commun., (1999) 1917–1924.

  9. Oosterom, G.E., Reek, J.N.H., Kamer, P.C.J. and van Leeuwen, P.W.N.M., Transition metal catalysis using functionalized dendrimers, Angew. Chem. Int. Ed., 40 (2001) 1828–1849.

    Article  CAS  Google Scholar 

  10. Newkome, G.R., Moorefield, C.N. and Vögtle, F., Dendrimers and Dendrons, Wiley-VCH, Weinheim, 2001.

    Google Scholar 

  11. (a) Haag, R. and Roller, S., Dendritic polymers as high-loading supports for organic synthesis and catalysis, in Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 305–344; (b) van Heerbeek, R., Kamer, P.C.J., van Leeuwen, P.W.N.M. and Reek, J.N.H., Dendrimers as support for recoverable catalysts and reagents, Chem. Rev., 102 (2002) 3717–3756; (c) Klein Gebbink, R.J.M., Kruithof, C.A., van Klink, G.P.M. and van Koten, G., Dendritic supports in organic synthesis, Rev. Mol. Biotechnol., 90 (2002) 183–193.

    Google Scholar 

  12. Schlenk, C., Kleij, A.W., Frey, H. and van Koten, G., Macromolecular-multisite catalysts obtained by grafting diaminoaryl palladium(II) complexes onto a hyperbranched-polytriallylsilane support, Angew. Chem. Int. Ed., 39 (2000) 3445–3447.

    Article  CAS  Google Scholar 

  13. Kreiter, R., Kleij, A.W., Klein Gebbink, R.J.M. and van Koten, G., Dendritic Catalysts, In Vögtle, F. and Schalley, C.A., Topics in Current Chemistry, Vol. 217, Springer-Verlag, Berlin Heidelberg, 2001, pp. 163–199.

    Google Scholar 

  14. Frey, H. and Haag, R., Hyperbranched polymers in industry, In Buschow, K.H.J., Cahn, R.H., Flemings, M.C., Ilschner, B., Kramer, E.J. and Majahan, S., Encyclopedia of Materials: Science and Technology, Elsevier Science, Oxford, 2001, pp. 3997–4000.

  15. Haag, R., Sunder, A., Hebel, A. and Roller, S., Dendritic aliphatic polyethers as high-loading soluble supports for carbonyl compounds and parallel membrane separation techniques, J. Comb. Chem., 4 (2002) 112–119.

    Article  CAS  Google Scholar 

  16. Haag, R., Sunder, A. and Stumbé, J.-F., An approach to glycerol dendrimers and pseudo-dendritic polyglycerols, J. Am. Chem. Soc., 122 (2000) 2954–2955.

    Article  CAS  Google Scholar 

  17. Hebel, A. and Haag, R., Polyglycerol as a high-loading support for boronic acids with application in solution-phase suzuki cross-couplings, J. Org. Chem., 67 (2002) 9452–9455.

    Article  CAS  Google Scholar 

  18. Roller, S., Siegers, C. and Haag, R., Dendritic polyglycerol as a high-loading support for parallel multistep synthesis of GABA lactam analogues, Tetrahedron, 60 (2004) 8711–8720.

    Article  CAS  Google Scholar 

  19. Sunder, A., Hanselmann, R., Frey, H. and Mülhaupt, R., Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization, Macromolecules, 32 (1999) 4240–4246.

    Article  CAS  Google Scholar 

  20. Sunder, A., Mülhaupt, R., Haag, R. and Frey, H., Hyperbranched polyether polyols: A modular approach to complex polymer architectures, Adv. Mater., 12 (2000) 235–239.

    Article  CAS  Google Scholar 

  21. For further information see: http://www.hyperpolymers.com

  22. (a) Mitsunobu, O., The use of diethyl azodicarboxylate and tri-phenylphosphine in synthesis and transformation of natural products, Synthesis, (1981) 1–28; (b) Hughes, D.L., The Mitsunobu reaction, In Paquette, L.A., Organic Reactions, Vol. 42, Wiley, 1992, pp. 335–656; (c) Ahn, C., Correia, R. and DeShong, P., Mechanistic Study of the Mitsunobu Reaction, J. Org. Chem., 67 (2002) 1751–1753; (d) Ahn, C. and DeShong, P., An approach to the stereoselective synthesis of syn- and anti-1,3-diol derivatives. Retention of configuration in the Mitsunobu reaction, J. Org. Chem., 67 (2002) 1754–1759.

  23. (a) Amos, R.A., Emblidge, R.W. and Havens, N., Esterification using a polymer-supported phosphine reagent, J. Org. Chem., 48 (1983) 3598–3600; (b) Tunoori, A.R., Dutta, D. and Georg, G.I., Polymer-bound triphenylphosphine as traceless reagent for Mitsunobu reactions in combinatorial chemistry: Synthesis of aryl ethers from phenols and alcohols, Tetrahedron Lett., 39 (1998) 8751–8754; (c) Charette, A.B., Janes, M.K. and Boezio, A.A., Mitsunobu Reaction Using Triphenylphosphine Linked To Non-Cross-Linked Polystyrene, J. Org. Chem., 66 (2001) 2178–2180; (d) Pelletier, J.C. and Kincaid, S., Mitsunobu reaction modifications allowing product isolation without chromatography: Application to a small parallel library, Tetrahedron Lett., 41 (2000) 797–800; (e) Alexandratos, S.D. and Miller, D.H.J., Microenvironmental effect in polymer-supported reagents. 1. Influence of copolymer architecture on the Mitsunobu reaction, Macromolecules, 29 (1996) 8025–8029; (f) Shelley, C.A. and Alexandratos, S.D., Polymer-supported reagents in the Mitsunobu reaction: A comparative study of the esterification and etherification reactions, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 39 (1998) 782–783.

  24. (a) Barrett, A.G.M., Roberts, R.S. and Schröder, J., Impurity annihilation: Chromatography-free parallel Mitsunobu reactions, Org. Lett., 2 (2000) 2999–3001; (b) Arnold, L.D., Assil, H.I. and Vederas, J.C., Polymer-supported alkyl azodicarboxylates for Mitsunobu reactions, J. Am. Chem. Soc., 111 (1989) 3973–3976.

    Google Scholar 

  25. Lan, P., Porco Jr., J.A., South, M.S. and Parlow, J.J., The development of a chromatography-free mitsunobu reaction: Synthesis and applications of an anthracene-tagged phosphine reagent, J. Comb. Chem., 5 (2003) 660–669.

    Article  CAS  Google Scholar 

  26. Starkey, G.W., Parlow, J.J. and Flynn, D.L., Chemically-tagged Mitsunobu reagents for use in solution-phase chemical library synthesis, Bioorg. Med. Chem. Lett., 8 (1998) 2385–2390.

    Article  CAS  Google Scholar 

  27. Meth-Cohn, O., Moore, C. and van Rooyen, P.H., The synthesis and chemistry of 4-aza-azulene, J. Chem. Soc. Perkin Trans. I (1985) 1793–1802.

    Google Scholar 

  28. Jordan, E.A. and Thorne, M.P., The thermal decomposition of carbamates and carbonates of 2-arylpropan-2-ols and 1-aryl-phenylethanols: Temperature and solvent effects on the reaction constant and kinetic isotope effects, J. Chem. Soc. Perkin Trans. II, 4 (1984) 647–654.

    Google Scholar 

  29. Yamamoto, Y., Yumoto, M. and Yamada, J.-i., Synthesis of a non-symmetric Azodicarbonyl Compound and its regioselective Reaction with organometallic Reagents, Tetrahedron Lett., 32 (1991) 3079–3082.

    CAS  Google Scholar 

  30. Rabjohn, N., The synthesis and reactions of diazodicarboxylates, J. Am. Chem. Soc., 70 (1948) 1181–1183.

    Article  CAS  Google Scholar 

  31. To avoid complex and confused names, we designate here the polyglycerol residue which does not contain the original OH-groups as ‘poly-glyceryl’ residue.

  32. (a) Mackay, D. and McIntyre, D.D., Mechanistic aspects of the methoxide-catalyzed transformation of 4-acyloxy-1,3,4-oxadiazines to N-amino-oxazolidonylhydrazones, Can. J. Chem., 62 (1984) 355–360; (b) Harris, J.M., Bolessa, E.A., Mendonca, A.J., Feng, S.-C. and Vederas, J.C., Synthesis of chiral diazanedicarboxylate and diazenedicarboxylate esters: Electrophilic amination reactions of achiral ester and amide enolates, J. Chem. Soc. Perkin Trans. I, 15 (1995) 1945–1950; (c) Harris, J.M., Bolessa, E.A. and Vederas, J.C., Synthesis of macrocyclic diazanedicarboxylate and diazenedicarboxylate esters containing a steroid skeleton: An unusual oxidation of bromide to bromine by a strained diazenedicarboxylate ester. X-Ray molecular structure of 3α-(3-hydroxypropyl)-24-nor-5β-cholan-7α-ol diazane-1,2-dicarboxylate cyclic diester, J. Chem. Soc. Perkin Trans. I, 15 (1995) 1951–1960; (d) Rosenbaum, C. and Waldmann, H., Solid phase synthesis of cyclic peptides by oxidative cyclative cleavage of an aryl hydrazide linker – synthesis of stylostatin 1, Tetrahedron Lett., 42 (2001) 5677–5680; (e) Carpino, L.A. and Han, G.Y., The 9-Fluorenylmethoxycarbonyl Amino-Protecting Group, J. Org. Chem., 37 (1972) 3404–3409; (f) Carpino, L.A., Terry, P.H. and Crowley, P.J., Examination of Synthetic Routes to Monosubstituted Diimides. II. Synthesis of t-Butyl Aryl- and Acylazoformates. Acid-Induced Cleavage of the Thionocarbo-t-butoxy Group, J. Org. Chem., 26 (1961) 4336–4340; (g) Bock, H. and Kroner, J., Substituenten-Effekte bei Azodicarbonsäure-Derivaten und ihre Deutung durch Hückel-MO-Rechnungen, Chem. Ber., 99 (1966) 2039–2051; (h) Holden, D.A., Synthesis and spreading behaviour of some reactive derivatives of long-chain alcohols and carboxylic acids, Can. J. Chem., 62 (1984) 574–579.

  33. Ingold, K. and Weaver, S.D., The Additive Formation of Four-membered Rings. Part VI. The Addition of Azo-compounds to Ethylenes and some Transformations of the Dimethylene-1:2-di-imine Ring, J. Am. Chem. Soc., 127 (1925) 378–387.

    CAS  Google Scholar 

  34. Yoakim, C., Guse, I., O'Meara, J.A. and Thavonekham, B., Removable phosphine reagents for the Mitsunobu reaction, Synlett, 4 (2003) 473–476.

    Google Scholar 

  35. (a) Hassner, A. and Alexanian, V., Direct room temperature esterification of carboxylic acids, Tetrahedron Lett., 46 (1978) 4475–4478; (b) Gilon, C. and Klausner, Y., A novel method for the facile synthesis of depsipeptides, Tetrahedron Lett., 40 (1979) 3811–3814; (c) Ziegler, F.E. and Berger, G.D., A mild method for the esterification of fatty acids, Synth. Commun., 9 (1979) 539–543; (d) Neises, B. and Steglich, W., Einfaches Verfahren zur Veresterung von Carbonsäuren, Angew. Chem., 90 (1978) 556–557.

  36. (a) Dhaon, M.K., Olsen, R.K. and Ramasamy, K., Esterification of N-Protected α-Amino Acids with Alcohol/Carbodiimide/4-(Dimethylamino)pyridine. Racemization of Aspartic and Glutamic Acid Derivatives, J. Org. Chem., 47 (1982) 1962–1965; (b) Tanaka, K., Nakanishi, K. and Berova, N., Absolute stereochemistry of allylic alcohols, amines, and other ene moieties: A microscale cross metathesis/exciton chirality protocol, J. Am. Chem. Soc., 125 (2003) 10802–10803; (c) Adamczyk, M., Fishpaugh, J.R. and Heuser, K.J., Preparation of succinimidyl and pentafluorophenyl active esters of 5- and 6- Carboxyfluorescein, Bioconjugate Chem., 8 (1997) 253–255; (d) Toyota, S., Shimasaki, T., Tanifuji, N. and Wakamatsu, K., Experimental and theoretical investigations of absolute stereochemistry and chiroptical properties of enantiopure 2,2-substituted 9,9-bianthryls, Tetrahedron: Asymmetry, 14 (2003) 1623–1629; (e) Benoiton, N.L., Lee, Y.C. and Chen, F.M.F., Identification and suppression of decomposition during carbodiimide-mediated reactions of Boc-amino acids with phenols, hydroxylamines and amino acid ester hydrochlorides, Int. J. Peptide Protein Res., 41 (1993) 583–594; (f) Pottorf, R.S., 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide Hydrochloride, In Paquette, L.A., Encyclopedia of Reagents for Organic Synthesis, Vol. 4, Wiley, Chichester, New York, Brisbane, Toronto, Singapore, 1995.

  37. Crosignani, S., White, P.D. and Linclau, B., Polymer-Supported O-Alkylisoureas: Useful Reagents for the O-Alkylation of Carboxylic Acids, J. Org. Chem., 69 (2004) 5897–5905.

    Article  CAS  Google Scholar 

  38. (a) Weinshenker, N.M. and Shen, C.-M., Polymeric reagents I. Synthesis of an insoluble polymeric carbodiimide, Tetrahedron Lett., 32 (1972) 3281–3284; (b) Chou, T.-S., Lee, S.-J. and Chang, L.-J., Supported carbodiimides. A comparison study, Bull. Inst. Chem. Acad. Sinica, 34 (1987) 27–33.

  39. Jamieson, C., Congreve, M.S., Emiabata-Smith, D.F. and Ley, S.V., A rapid approach for the optimisation of polymer supported reagents in synthesis, Synlett (2000) 1603–1607.

  40. Crosignani, S., White, P.D., Steinauer, R. and Linclau, B., Polymer-supported O-benzyl and O-allyisoureas: Convenient preparation and use in ester synthesis from carboxylic acids, Org. Lett., 5 (2003) 853–856.

    Article  CAS  Google Scholar 

  41. Guisado, O., Martínez, S. and Pastor, J., A novel, facile methodology for the synthesis of N,N-bis(tert-butoxycarbonyl)-protected guanidines using polymer-supported carbodiimide, Tetrahedron Lett., 43 (2002) 7105–7109.

    Article  CAS  Google Scholar 

  42. Fresneda, P.M. and Molina, P., Application of iminophosphorane-based methodologies for the synthesis of natural products, Synlett, (2004) 1–17.

  43. Gololobov, Y.G., Zhmurova, I.N. and Kasukhin, L.F., Sixty years of Staudinger reaction, Tetrahedron, 37 (1981) 437–472.

    Article  CAS  Google Scholar 

  44. Salazar, R., Fomina, L. and Fomine, S., Functionalized polyglycidol-CuCl-complexes as catalysts in the oxidative coupling reaction of terminal acetylenes, Polym. Bull., 47 (2001) 151–158.

    Article  CAS  Google Scholar 

  45. (a) Saito, T., Nakane, M., Endo, M., Yamashita, H., Oyamada, Y. and Motoki, S., Conjugated heterocumulenes. Synthesis of C=C-conjugated carbodiimides by a Wittig-type reaction of iminophosphoranes with isocyanates and their cycloadditions, Chem. Lett., (1986) 135–138; (b) Tsuge, O., Kanemasa, S. and Matsuda, K., One-Pot Synthesis of N-((Trimethylsilyl)methyl)imines and (Trimethylsilyl)methyl-Substituted Heterocumulenes from (Trimethylsilyl)methyl Azide, J. Org. Chem., 49 (1984) 2688–2691; (c) Saito, T., Ohkubo, T., Kuboki, H., Maeda, M., Tsuda, K., Karakasa, T. and Satsumabayashi, S., Thermal or Lewis acid-promoted electrocyclisation and hetero Diels-Alder cycloaddition of α,β-unsaturated (conjugated) carbodiimides: A facile synthesis of nitrogen-containing heterocycles, J. Chem. Soc., Perkin Trans. 1, (1998) 3065–3080.

    Google Scholar 

  46. Gottlieb, H.E., Kotlyar, V. and Nudelman, A., NMR chemical shifts of common laboratory solvents as trace impurities, J. Org. Chem., 62 (1997) 7512–7515.

    Article  CAS  Google Scholar 

  47. Haag, R., Mecking, S. and Türk, H., Patent Application DE 10211664A1, (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Haag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roller, S., Zhou, H. & Haag, R. High-loading polyglycerol supported reagents for Mitsunobu- and acylation-reactions and other useful polyglycerol derivatives. Mol Divers 9, 305–316 (2005). https://doi.org/10.1007/s11030-005-8117-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-8117-y

Key Words

Navigation