Skip to main content
Log in

Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium

  • Published:
Mechanics of Composite Materials Aims and scope

In order to determine the nonlocal critical buckling loads of chiral double-walled carbon nanotubes embedded in an elastic medium, the nonlocal Timoshenko beam theory is implemented. The solution for the nonlocal critical buckling loads is obtained using governing equations of the nonlocal theory. The effect of the elastic medium, the buckling mode number, chirality, and aspect ratio on the nonlocal critical buckling loads of double-walled carbon nanotubes are studied and discussed. The Young’s modulus of three types of double-walled carbon nanotubes, with armchair, zigzag, and chiral tubules, are calculated based on molecular dynamics simulations. The nonlocal critical buckling loads in relation to the chirality of double-walled carbon nanotubes, buckling mode number, and length-to-diameter (aspect} ratio, in the presence and absence of an elastic medium, are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58 (1991).

    Article  Google Scholar 

  2. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1 nm diameter,” Nature, 363, 603 (1993).

    Article  Google Scholar 

  3. M. S. Dresselhaus, and P. Avouris, “Carbon nanotubes: synthesis, structure, properties and application,” Top Appl. Phys., 80, 1-11 (2001).

    Article  Google Scholar 

  4. M. Zidour, L. Hadji, M. Bouazza, A. Tounsi, and E. A. Adda Bedia, “The mechanical properties of zigzag carbon nanotube using the energy – equivalent model,” J. Chem. Mater. Research, 3, 9-14 (2015).

    Google Scholar 

  5. S. Tagrara et al., “On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams,” Steel and Compos. Struct., 19, No. 5, 1259-1277 (2015).

    Article  Google Scholar 

  6. M. Aydogdu, “On the vibration of aligned carbon nanotube reinforced composite beams,” Advances in Nano Research, 2, No. 4, 199-210 (2014).

    Article  Google Scholar 

  7. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, 384, 147-50 (1996).

    Article  Google Scholar 

  8. H. Baghdadi, A. Tounsi, M. Zidour, and A. Benzair, “Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory,” Fullerenes, Nanotubes and Carbon Nanostructures, 23, 266-272 (2015).

    Article  Google Scholar 

  9. A. Besseghier, H. Heireche, A. A. Bousahla, A. Tounsi, and A. Benzair, “Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix,” Advances in Nano Research, 3, No. 1, 29-37 (2015).

    Article  Google Scholar 

  10. M. Bouazza, K. Amara, M. Zidour, A. Tounsi, and El A. A. Bedia, “Postbuckling analysis of nanobeams using trigonometric shear deformation theory,” Appl. Sci. Reports, 10, No. 2, 112-121 (2015).

  11. M. Zidour, T. H. Daouadji, K. H. Benrahou, A. Tounsi, E. A. Adda Bedia, and L. Hadji, “Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory,” Mech. Compos. Mater., 50, No. 1, 95-104 (2014).

    Article  Google Scholar 

  12. Z. Belabed, M. S. A. Houari, A. Tounsi, S. R. Mahmoud, and O. Anwar Bég, “An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates,” Composites: Part B, 60, 274-283 (2014).

    Article  Google Scholar 

  13. H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. Adda Bedia, “A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,” ASCE J. Eng. Mech., 140, 374-383 (2014).

    Article  Google Scholar 

  14. T. Bensattalah, T. H. Daouadji, M. Zidour, A. Tounsi, and E. A. Adda Bedia, “Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories,” Mech. Compos. Mater., 52, No. 4, (2016).

  15. A. Tounsi, S. Benguediab, E. A. A. Bedia, A. Semmah, and M. Zidour, “Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes,” Advances in Nano Research, 1, No. 1, 1-11 (2013).

    Article  Google Scholar 

  16. Q. Han and G. Lu, “Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium,” Eur. J. of Mechanics-A/Solids, 22, No. 6, 875-883 (2003).

    Article  Google Scholar 

  17. F. Larbi Chaht, A. Kaci, M. S. A. Houari, A. Tounsi, O. A. Bég, and S. R. Mahmoud, “Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect,” Steel and Compos. Struct., 18, No. 2, 425-442 (2015).

    Article  Google Scholar 

  18. K. S. Al-Basyouni, A. Tounsi, and S. R. Mahmoud, “Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position,” Compos. Struct., 125, 621-630 (2015).

    Article  Google Scholar 

  19. A. Zemri, M. S. A. Houari, A. A. Bousahla, and A. Tounsi, “A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory,” Struct. Eng. Mech., Int. J., 54, No. 4, 693-710 (2015).

    Article  Google Scholar 

  20. F. Bounouara, K. H. Benrahou, I. Belkorissat, and A. Tounsi, “A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,” Steel and Compos. Struct., 20, No. 2, 227-249 (2016).

    Article  Google Scholar 

  21. I. Belkorissat, M. S. A. Houari, A. Tounsi, E. A. Adda Bedia, and S. R. Mahmoud, “On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,” Steel Compos. Struct., Int. J., 18, No. 4, 1063-1081 (2015).

    Article  Google Scholar 

  22. S. Benguediab, A. Tounsi, M. Zidour, and A. Semmah, “Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes,” Composites: Part B, 57, 21-24, (2014).

    Article  Google Scholar 

  23. L. Boumia, M. Zidour, A. Benzair, and A. Tounsi, “Timoshenko beam model for vibration analysis of chiral singlewalled carbon nanotubes,” Physica E, 59, 186-191 (2014).

    Article  Google Scholar 

  24. A. Tounsi, M. S. A. Houari, and A. Bessaim, “A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate,” Struct. Eng. Mech., Int. J., 60, No. 4, 547-565 (2016).

    Article  Google Scholar 

  25. M. S. A. Houari, A. Tounsi, A. Bessaim, and S. R. Mahmoud, “A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates,” Steel and Compos. Struct., 22, No. 2, 257-276 (2016).

    Article  Google Scholar 

  26. M. Bourada, A. Kaci, M. S. A. Houari, and A. Tounsi, “A new simple shear and normal deformations theory for functionally graded beams,” Steel and Compos. Struct., 18, No. 2, 409-423 (2015).

    Article  Google Scholar 

  27. M. Bennoun, M. S. A. Houari, and A. Tounsi, “A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates,” Mech. of Advanced Materials and Struct., 23, No. 4, 423-431 (2016).

    Article  Google Scholar 

  28. S. Ait Yahia, H. Ait Atmane, M. S. A. Houari, and A. Tounsi, “Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,” Structural Engineering and Mechanics, 53, No. 6, 1143-1165 (2015).

    Article  Google Scholar 

  29. A. Mahi, E. A. Adda Bedia, and A. Tounsi, “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,” Appl. Math. Modelling, 39, 2489-2508 (2015).

    Article  Google Scholar 

  30. A. Hamidi, M. S. A. Houari, S. R. Mahmoud, and A. Tounsi, “A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates,” Steel and Compos. Struct., 18, No. 1, 235-253 (2015).

    Article  Google Scholar 

  31. F. Bourada, K. Amara, and A. Tounsi, “Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory,” Steel and Compos. Struct., 21, No. 6, 1287-1306 (2016).

    Article  Google Scholar 

  32. A. A. Bousahla, M. S. A. Houari, A. Tounsi, and E. A. Adda Bedia, “A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates,” Int. J. Computat. Method, 11, No. 6, 1350082 (2014).

    Article  Google Scholar 

  33. H. Bellifa, K. H. Benrahou, L. Hadji, M. S. A. Houari, and A. Tounsi, “Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position,” J. Braz. Soc. Mech. Sci. Eng., 38, No. 1, 265-275 (2016).

    Article  Google Scholar 

  34. B. Bouderba, M. S. A. Houari, and A. Tounsi, “Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations,” Steel and Compos. Struct., 14, No. 1, 85-104 (2013).

    Article  Google Scholar 

  35. B. Akgöz and O. Civalek, “A novel microstructure-dependent shear deformable beam model,” Int. J. Mech. Sci. 99, 10-20 (2015).

    Article  Google Scholar 

  36. M. Gürses, B. Akgöz, and O. Civalek, “Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation,” Appl. Math. and Comput., 219, No. (6, 3226-3240 (2012).

  37. A. Tounsi, M. S. A. Houari, S. Benyoucef, and E. A. Adda Bedia, “A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates,” Aerospace Sci. Tech., 24, 209-220 (2013).

    Article  Google Scholar 

  38. M. Zidi, A. Tounsi, M. S. A. Houari, and O. A. Bég, “Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory,” Aerospace Sci. Tech., 34, 24-34, (2014).

    Article  Google Scholar 

  39. Ö. Civalek and C. Demir, “A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method,” Appl. Math. and Comput., 289, 335-352, (2016).

    Google Scholar 

  40. W. X. Bao, Ch. Ch. Zhu, and W. Zh. Cui, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B, 352, 156-163 (2004).

    Article  Google Scholar 

  41. J. Z. Liu, Q. S. Zheng, and Q. Jiang, “Effect of a rippling mode on resonances of carbon nanotubes,” Phys. Rev. Lett., 86, 4843 (2001).

    Article  Google Scholar 

  42. T. W. Tombler, C. W. Zhou, and L. Alexseyev, “Reversible nanotube electro-mechanical characteristics under local probe manipulation,” Nature, 405, 769 (2000).

    Article  Google Scholar 

  43. Y. Tokio, “Recent development of carbon nanotube,” Synth. Met, 70, No. 151, 1-8 (1995).

    Google Scholar 

  44. L. A. Girifalco and R. A. Lad, Chem, “Energy of cohesion, compressibility, and the potential energy functions of the graphite system,” J. Phys., 25, 693 (1956).

  45. L. A. Girifalco, Chem, “Interaction potential for carbon (C60) molecules,” J. Phys., 95, 5370 (1991).

  46. B. Reulet, A. Yu. Kasumov, M. Kociak, R. Deblock, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, Journet, and H. Bouchiat, “Acoustoelectric effects in carbon nanotubes,” Phys. Rev. Lett., 85, 2829 (2000).

  47. L. J. Sudak, “Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics,” J. Appl. Phys., 94, 7281 (2003).

    Article  Google Scholar 

  48. Z. C. Tu and Z. C. Ou-Yang, “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s modulus dependent on layer number,” Phys Rev B, 65, 233407 (2002).

    Article  Google Scholar 

  49. M. Mohammadimehr, A. R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, and Q. Han, “Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory,” Proc. Mech. E Part C: J. Mech. Eng. Sci., 225 (2011).

Download references

Acknowledgments

This research was supported by the Algerian National Agency for the Development of University Research (ANDRU) and by the University of Sidi Bel Abbes (UDL SBA) in Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zidour.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 6, pp. 1191-1204, November-December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemi, A., Zidour, M., Heireche, H. et al. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium. Mech Compos Mater 53, 827–836 (2018). https://doi.org/10.1007/s11029-018-9708-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9708-x

Keywords

Navigation