Skip to main content

Advertisement

Log in

Melatonin and its mechanism of action in the female reproductive system and related malignancies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siu AW et al (2006) Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 40(2):101–109

    Article  CAS  PubMed  Google Scholar 

  2. Sarlak G et al (2013) Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci 123(1):9–24

    Article  CAS  PubMed  Google Scholar 

  3. Hardeland R, Pandi-Perumal S, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 38(3):313–316

    Article  CAS  PubMed  Google Scholar 

  4. Tamura H et al (2014) Melatonin and female reproduction. J Obstet Gynaecol Res 40(1):1–11

    Article  CAS  PubMed  Google Scholar 

  5. Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61(2–3):77–84

    Article  CAS  PubMed  Google Scholar 

  6. Hornedo-Ortega R et al (2016) Melatonin and other tryptophan metabolites produced by yeasts: implications in cardiovascular and neurodegenerative diseases. Front Microbiol 6:1565

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rodriguez C et al (2013) Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 14(4):6597–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bizzarri M et al (2013) Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 17(12):1483–1496

    Article  CAS  PubMed  Google Scholar 

  9. Tan DX et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42

    Article  CAS  PubMed  Google Scholar 

  10. Peyrot F, Ducrocq C (2008) Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J Pineal Res 45(3):235–246

    Article  CAS  PubMed  Google Scholar 

  11. Tan D-X (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  12. Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25(3–4):177–195

    Article  CAS  PubMed  Google Scholar 

  13. Ruder EH, Hartman TJ, Goldman MB (2009) Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol 21(3):219

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brzezinski A et al (1987) Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 64(4):865–867

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura Y et al (2003) Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil Steril 80(4):1012–1016

    Article  PubMed  Google Scholar 

  16. Tamura H et al (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92(1):328–343

    Article  CAS  PubMed  Google Scholar 

  17. Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60(3):97–108

    Article  CAS  PubMed  Google Scholar 

  18. Masana MI, Soares JM Jr, Dubocovich ML (2005) 17β-estradiol modulates hMT1 melatonin receptor function. Neuroendocrinology 81(2):87–95

    Article  CAS  PubMed  Google Scholar 

  19. Sampaio RV et al (2012) MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol 10(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang JT et al (2009) Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 46(1):22–28

    Article  CAS  PubMed  Google Scholar 

  21. He C et al (2016) Melatonin and its receptor MT1 are involved in the downstream reaction to luteinizing hormone and participate in the regulation of luteinization in different species. J Pineal Res 61(3):279–290

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Barcelo EJ et al (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 21(6):819–831

    Article  CAS  PubMed  Google Scholar 

  23. Li Y et al (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8(24):39896

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hill SM et al (1992) The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett 64(3):249–256

    Article  CAS  PubMed  Google Scholar 

  25. El-Sokkary GH, Reiier RJ, Abdel-Ghaffar SK (2003) Melatonin supplementation restores cellular proliferation and DNA synthesis in the splenic and thymic lymphocytes of old rats. Neuroendocrinol Lett 24(3–4):215–223

    CAS  PubMed  Google Scholar 

  26. Di Bella G et al (2013) Melatonin anticancer effects. Int J Mol Sci 14(2):2410–2430

    Article  PubMed  PubMed Central  Google Scholar 

  27. El-Sokkary GH, Ismail IA, Saber SH (2019) Melatonin inhibits breast cancer cell invasion through modulating DJ-1/KLF17/ID-1 signaling pathway. J Cell Biochem 120(3):3945–3957

    Article  CAS  PubMed  Google Scholar 

  28. Sabzichi M et al (2016) Sustained release of melatonin: a novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf B 145:64–71

    Article  CAS  Google Scholar 

  29. Reiter RJ et al (2009) Melatonin and reproduction revisited. Biol Reprod 81(3):445–456

    Article  CAS  PubMed  Google Scholar 

  30. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12(2):151–180

    Article  CAS  PubMed  Google Scholar 

  31. Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  32. Kleszczyński K et al (2018) Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. Int J Mol Sci 19(12):3786

    Article  PubMed Central  Google Scholar 

  33. Skobowiat C et al (2018) Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J Pineal Res 65(2):e12501

    Article  PubMed  PubMed Central  Google Scholar 

  34. Janjetovic Z et al (2017) Melatonin and its metabolites protect human melanocytes against UVB-induced damage: involvement of NRF2-mediated pathways. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  35. Gurer-Orhan H, Suzen S (2015) Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr Med Chem 22(4):490–499

    Article  CAS  PubMed  Google Scholar 

  36. Benitez-King G, Anton-Tay F (1993) Calmodulin mediates melatonin cytoskeletal effects. Experientia 49(8):635–641

    Article  CAS  PubMed  Google Scholar 

  37. Dodson ER, Zee PC (2010) Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin 5(4):701–715

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sack RL et al (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343(15):1070–1077

    Article  CAS  PubMed  Google Scholar 

  39. Djamgoz M, Wagner H-J (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochem Int 20(2):139–191

    Article  CAS  PubMed  Google Scholar 

  40. Eryilmaz OG et al (2011) Melatonin improves the oocyte and the embryo in IVF patients with sleep disturbances, but does not improve the sleeping problems. J Assist Reprod Genet 28(9):815

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pandi-Perumal SR et al (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273(13):2813–2838

    Article  CAS  PubMed  Google Scholar 

  42. Notter DR, Cockett NE (2005) Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: a review. Genet Sel Evol 37:1–16

    Article  Google Scholar 

  43. Iannuzzi L et al (2003) The river buffalo (Bubalus bubalis, 2n= 50) cytogenetic map: assignment of 64 loci by fluorescence in situ hybridization and R-banding. Cytogenet Genome Res 102(1–4):65–75

    Article  CAS  PubMed  Google Scholar 

  44. Reppert SM (1997) Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms 12(6):528–531

    Article  CAS  PubMed  Google Scholar 

  45. Jung B, Ahmad N (2006) Melatonin in cancer management: progress and promise. Cancer Res 66(20):9789–9793

    Article  CAS  PubMed  Google Scholar 

  46. Ekmekcioglu C, Thalhammer T (2014) Melatonin receptors and their role in human diseases. In Melatonin and melatonergic drugs in clinical practice. Springer, New Delhi, pp 1–15

  47. Maganhin CC et al (2013) Effects of melatonin on ovarian follicles. Eur J Obstet Gynecol Reprod Biol 166(2):178–184

    Article  CAS  PubMed  Google Scholar 

  48. Maganhin CC et al (2014) Melatonin influences on steroidogenic gene expression in the ovary of pinealectomized rats. Fertil Steril 102(1):291–298

    Article  CAS  PubMed  Google Scholar 

  49. Woo MM et al (2001) Direct action of melatonin in human granulosa-luteal cells. J Clin Endocrinol Metab 86(10):4789–4797

    Article  CAS  PubMed  Google Scholar 

  50. Jamnongjit M, Hammes SR (2006) Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 5(11):1178–1183

    Article  CAS  PubMed  Google Scholar 

  51. Jin X et al (2005) Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev Inc Gamete Res 70(1):82–90

    Article  CAS  Google Scholar 

  52. Driancourt M-A et al (2000) Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 5(3):143–152

    Article  CAS  PubMed  Google Scholar 

  53. Edling CE, Hallberg B (2007) c-Kit—a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 39(11):1995–1998

    Article  CAS  PubMed  Google Scholar 

  54. Ortíz-López L et al (2009) ROCK-regulated cytoskeletal dynamics participate in the inhibitory effect of melatonin on cancer cell migration. J Pineal Res 46(1):15–21

    Article  PubMed  Google Scholar 

  55. Reiter RJ (2004) Mechanisms of cancer inhibition by melatonin. J Pineal Res 37(3):213–214

    Article  CAS  PubMed  Google Scholar 

  56. Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol Life Sci 74(21):3883–3896

    Article  CAS  PubMed  Google Scholar 

  57. Tan DX et al (2007) Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J Pineal Res 43(4):317–320

    Article  CAS  PubMed  Google Scholar 

  58. Boutin JA (2016) Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 20(3):303–317

    Article  CAS  PubMed  Google Scholar 

  59. Adriaens I et al (2006) Melatonin has dose-dependent effects on folliculogenesis, oocyte maturation capacity and steroidogenesis. Toxicology 228(2–3):333–343

    Article  CAS  PubMed  Google Scholar 

  60. Wu J et al (2011) T-2 toxin induces apoptosis in ovarian granulosa cells of rats through reactive oxygen species-mediated mitochondrial pathway. Toxicol Lett 202(3):168–177

    Article  CAS  PubMed  Google Scholar 

  61. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54(3):245–257

    Article  CAS  PubMed  Google Scholar 

  62. Taketani T et al (2011) Protective role of melatonin in progesterone production by human luteal cells. J Pineal Res 51(2):207–213

    Article  CAS  PubMed  Google Scholar 

  63. Tanabe M et al (2014) Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. J Reprod Dev 61(1):35–41

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arakane F et al (1998) The mechanism of action of steroidogenic acute regulatory protein (StAR) StAR acts on the outside of mitochondria to stimulate steroidogenesis. J Biol Chem 273(26):16339–16345

    Article  CAS  PubMed  Google Scholar 

  65. Ezzati M et al (2018) Evaluating the effect of melatonin on HAS2, and PGR expression, as well as cumulus expansion, and fertility potential in mice. Cell J (Yakhteh) 20(1):108

    Google Scholar 

  66. Hill SM et al (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22(3):R183–R204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hill SM et al (2011) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 16(3):235

    Article  PubMed  Google Scholar 

  68. Soni N et al (2019) Expression of MTNR1A, steroid (ERα, ERβ, and PR) receptor gene transcripts, and the concentration of melatonin and steroid hormones in the ovarian follicles of buffalo. Domest Anim Endocrinol 72:106371

    Article  PubMed  Google Scholar 

  69. Ladd Prosser C, Weinstein SJ (1950) Comparison of blood volume in animals with open and with closed circulatory systems. Physiol Zool 23(2):113–124

    Article  CAS  PubMed  Google Scholar 

  70. Jardine DS (2007) Heat illness and heat stroke. Pediatr Rev 28(7):249

    Article  PubMed  Google Scholar 

  71. Sirotkin AV (2010) Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. J Exp Biol 213(12):2125–2130

    Article  CAS  PubMed  Google Scholar 

  72. Yuan Y et al (2008) Heat shock at the germinal vesicle breakdown stage induces apoptosis in surrounding cumulus cells and reduces maturation rates of porcine oocytes in vitro. Theriogenology 70(2):168–178

    Article  CAS  PubMed  Google Scholar 

  73. Dutt R (1964) Detrimental effects of high ambient temperature on fertility and early embryo survival in sheep. Int J Biometeorol 8(1):47–56

    Article  CAS  PubMed  Google Scholar 

  74. Schillo KK, Alliston CW, Malven PV (1978) Plasma concentrations of luteinizing hormone and prolactin in the ovariectomized ewe during induced hyperthermia. Biol Reprod 19(2):306–313

    Article  CAS  PubMed  Google Scholar 

  75. Shimizu T et al (2005) Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction 129(4):463–472

    Article  CAS  PubMed  Google Scholar 

  76. Moniruzzaman M et al (2017) Change in redox state and heat shock protein expression in an Indian major carp Cirrhinus cirrhosus exposed to zinc and lead. J Toxicol Sci 42(6):731–740

    Article  CAS  PubMed  Google Scholar 

  77. Moniruzzaman M et al (2018) Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biol Res 11;51(1):17

  78. Li Y et al (2015) Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res 59(3):365–375

    Article  CAS  PubMed  Google Scholar 

  79. Ezzati M et al (2020) Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell Tissue Bank 21(1):1–15

    Article  PubMed  Google Scholar 

  80. Mazoochi T et al (2018) The effect of melatonin on expression of p53 and ovarian preantral follicle development isolated from vitrified ovary. Comp Clin Pathol 27(1):83–88

    Article  CAS  Google Scholar 

  81. Englert Y et al (2007) Impaired ovarian stimulation during in vitro fertilization in women who are seropositive for hepatitis C virus and seronegative for human immunodeficiency virus. Fertil Steril 88(3):607–611

    Article  PubMed  Google Scholar 

  82. Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67(1):73–80

    Article  CAS  PubMed  Google Scholar 

  83. Somfai T et al (2007) Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55(2):115–126

    Article  CAS  PubMed  Google Scholar 

  84. Maity P et al (2009) Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J Pineal Res 46(3):314–323

    Article  CAS  PubMed  Google Scholar 

  85. Juknat AA et al (2005) Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes. J Pineal Res 38(2):84–92

    Article  CAS  PubMed  Google Scholar 

  86. Naidu SD, Kostov RV, Dinkova-Kostova AT (2015) Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol Sci 36(1):6–14

    Article  Google Scholar 

  87. Nakamura BN et al (2011) Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology 152(7):2806–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356

    Article  CAS  PubMed  Google Scholar 

  89. Rodrigues-Cunha MC et al (2016) Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology 86(7):1685–1694

    Article  CAS  PubMed  Google Scholar 

  90. Hartson SD, Matts RL (2012) Approaches for defining the Hsp90-dependent proteome. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1823(3):656–667

    Article  CAS  Google Scholar 

  91. Le Masson F, Christians E (2011) HSFs and regulation of Hsp70. 1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 16(3):275–285

    Article  CAS  PubMed  Google Scholar 

  92. Zeng Z et al (2015) Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J Anim Sci Biotechnol 6(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hardeland R et al (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93(3):350–384

    Article  CAS  PubMed  Google Scholar 

  94. Ferreira S et al (2013) Effects of melatonin on DNA damage induced by cyclophosphamide in rats. Braz J Med Biol Res 46(3):278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reiter RJ et al (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species. Cell Biochem Biophys 34(2):237–256

    Article  CAS  PubMed  Google Scholar 

  96. Khalil WA, Marei WF, Khalid M (2013) Protective effects of antioxidants on linoleic acid–treated bovine oocytes during maturation and subsequent embryo development. Theriogenology 80(2):161–168

    Article  CAS  PubMed  Google Scholar 

  97. Hamdan M et al (2015) Influence of endometriosis on assisted reproductive technology outcomes: a systematic review and meta-analysis. Obstet Gynecol 125(1):79–88

    Article  PubMed  Google Scholar 

  98. Singh N et al (2014) Effect of endometriosis on implantation rates when compared to tubal factor in fresh non donor in vitro fertilization cycles. J Hum Reprod Sci 7(2):143

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ahelik A et al (2015) Systemic oxidative stress could predict assisted reproductive technique outcome. J Assist Reprod Genet 32(5):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cooke MS et al (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  101. Hamdan M et al (2016) The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep 6:36994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Basini G et al (2016) Swine granulosa cells show typical endothelial cell characteristics. Reprod Sci 23(5):630–637

    Article  CAS  PubMed  Google Scholar 

  103. Basini G, Grasselli F (2015) Nitric oxide in follicle development and oocyte competence. Reproduction 150(1):R1–R9

    Article  CAS  PubMed  Google Scholar 

  104. Basini G et al (2017) Melatonin potentially acts directly on swine ovary by modulating granulosa cell function and angiogenesis. Reprod Fertil Dev 29(12):2305–2312

    Article  CAS  PubMed  Google Scholar 

  105. González-González A et al (2018) Complementary actions of melatonin on angiogenic factors, the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells. Oncol Rep 39(1):433–441

    PubMed  Google Scholar 

  106. Chuffa LGDA, Reiter RJ, Lupi LA (2017) Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 38(10):945–952

    Article  CAS  PubMed  Google Scholar 

  107. Carbajo-Pescador S et al (2013) Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 109(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Colombo J et al (2016) Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett 12(1):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He Y-M et al (2016) Melatonin modulates the functions of porcine granulosa cells via its membrane receptor MT2 in vitro. Anim Reprod Sci 172:164–172

    Article  CAS  PubMed  Google Scholar 

  110. Roa J et al (2009) The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 150(11):5016–5026

    Article  CAS  PubMed  Google Scholar 

  111. Dann SG, Thomas G (2006) The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 580(12):2821–2829

    Article  CAS  PubMed  Google Scholar 

  112. Ikenoue T et al (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27(14):1919–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dowling RJ et al (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics 1804(3):433–439

    Article  CAS  Google Scholar 

  114. Santos H et al (2008) Ovarian follicular atresia is mediated by heterophagy, autophagy, and apoptosis in Prochilodus argenteus and Leporinus taeniatus (Teleostei: Characiformes). Theriogenology 70(9):1449–1460

    Article  CAS  PubMed  Google Scholar 

  115. Kandemir YB, Aydin C, Gorgisen G (2017) The effects of melatonin on oxidative stress and prevention of primordial follicle loss via activation of mTOR pathway in the rat ovary. Cell Mol Biol (Noisy le Grand) 63:100–106

    Article  Google Scholar 

  116. Luciano AM et al (2004) Role of intracellular cyclic adenosine 3′, 5′-monophosphate concentration and oocyte-cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte. Biol Reprod 70(2):465–472

    Article  CAS  PubMed  Google Scholar 

  117. Thomas RE, Armstrong DT, Gilchrist RB (2002) Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol 244(2):215–225

    Article  CAS  PubMed  Google Scholar 

  118. Tian X et al (2017) Beneficial effects of melatonin on the in vitro maturation of sheep oocytes and its relation to melatonin receptors. Int J Mol Sci 18(4):834

    Article  PubMed Central  Google Scholar 

  119. Kubatka P et al (2018) Melatonin and breast cancer: evidences from preclinical and human studies. Crit Rev Oncol Hematol 122:133–143

    Article  PubMed  Google Scholar 

  120. del Río B et al (2004) Melatonin, an endogenous-specific inhibitor of estrogen receptor α via calmodulin. J Biol Chem 279(37):38294–38302

    Article  PubMed  Google Scholar 

  121. Nooshinfar E et al (2017) Melatonin, an inhibitory agent in breast cancer. Breast Cancer 24(1):42–51

    Article  PubMed  Google Scholar 

  122. Goyal R et al (2019) Role of melatonin in breast carcinoma: correlation of expression patterns of melatonin-1 receptor with estrogen, progesterone, and HER2 receptors. Appl Immunohistochem Mol Morphol 28(7):518–523

    Article  Google Scholar 

  123. Dodda BR et al (2019) Co-administering melatonin with an estradiol-progesterone menopausal hormone therapy represses mammary cancer development in a mouse model of HER2-positive breast cancer. Front Oncol 9:525

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hasan M et al (2020) Anti-cancer effects of melatonin, estrogen, and progesterone hormone therapy in MCF-7 and MDA-MB-231 breast cancer cells. FASEB J 34(S1):1–1

    Google Scholar 

  125. Wang T et al (2018) Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac Cancer 9(3):368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Proietti S et al (2018) Increase in motility and invasiveness of MCF 7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J Pineal Res 64(4):e12467

    Article  PubMed  Google Scholar 

  127. Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  PubMed  Google Scholar 

  128. Jovanovic M, Hengartner M (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25(46):6176–6187

    Article  CAS  PubMed  Google Scholar 

  129. Schickel R et al (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974

    Article  CAS  PubMed  Google Scholar 

  130. Su S-C et al (2018) Functional interaction between melatonin signaling and noncoding RNAs. Trends Endocrinol Metab 29(6):435–445

    Article  CAS  PubMed  Google Scholar 

  131. Lee SE et al (2011) MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 51(3):345–352

    Article  CAS  PubMed  Google Scholar 

  132. Cerk S et al (2016) Current status of long non-coding RNAs in human breast cancer. Int J Mol Sci 17(9):1485

    Article  PubMed Central  Google Scholar 

  133. Hill SM et al (2009) Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther 8(4):337–346

    Article  CAS  PubMed  Google Scholar 

  134. Joo SS, Yoo YM (2009) Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res 47(1):8–14

    Article  CAS  PubMed  Google Scholar 

  135. Cini G et al (2005) Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J Pineal Res 39(1):12–20

    Article  CAS  PubMed  Google Scholar 

  136. Schernhammer E, Schulmeister K (2004) Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 90(5):941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pham T-T et al (2019) Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: evidence from a case-control study in Korean women. Sci Rep 9(1):1–9

    Article  Google Scholar 

  138. Schernhammer ES, Hankinson SE (2005) Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 97(14):1084–1087

    Article  CAS  PubMed  Google Scholar 

  139. Santoro R et al (2013) Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis 34(5):1051–1061

    Article  CAS  PubMed  Google Scholar 

  140. Mori F et al (2016) Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget 7(15):20532

    Article  PubMed  PubMed Central  Google Scholar 

  141. Guil S, Cáceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596

    Article  CAS  PubMed  Google Scholar 

  142. Michlewski G et al (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Borin TF et al (2016) Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res 60(1):3–15

    Article  CAS  PubMed  Google Scholar 

  144. Sulima SO et al (2017) How ribosomes translate cancer. Cancer Discov 7(10):1069–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Montanaro L, Treré D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173(2):301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jung JH et al (2013) Melatonin suppresses the expression of 45S preribosomal RNA and upstream binding factor and enhances the antitumor activity of puromycin in MDA-MB-231 breast cancer cells. Evid-Based Complement Altern Med 2013:879746

    Article  Google Scholar 

  147. Xiang S et al (2015) Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J Pineal Res 59(1):60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dauchy RT et al (2014) Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 74(15):4099–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Alonso-González C et al (2015) Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair. J Pineal Res 58(2):189–197

    Article  PubMed  Google Scholar 

  150. Ezzati M et al (2020) A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 248:117463

    Article  CAS  PubMed  Google Scholar 

  151. Jardim-Perassi BV et al (2014) Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PloS One 9(1):e85311

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schwimmer H et al (2014) Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol Int 31(1):144–150

    Article  CAS  PubMed  Google Scholar 

  153. Mao L et al (2012) Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β. Mol Endocrinol 26(11):1808–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jablonska K et al (2014) Expression of the MT1 melatonin receptor in ovarian cancer cells. Int J Mol Sci 15(12):23074–23089

    Article  PubMed  PubMed Central  Google Scholar 

  155. Carbajo-Pescador S et al (2011) Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: role of the MT1 receptor. J Pineal Res 51(4):463–471

    Article  CAS  PubMed  Google Scholar 

  156. Chuffa LGA et al (2015) Melatonin attenuates the TLR4-mediated inflammatory response through MyD88-and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer 15(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferreira GM et al (2014) Melatonin attenuates Her-2, p38 MAPK, p-AKT, and mTOR levels in ovarian carcinoma of ethanol-preferring rats. J Cancer 5(9):728

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shen C-J et al (2016) Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of G1 arrest by targeting CDKs. Int J Mol Sci 17(2):176

    Article  PubMed Central  Google Scholar 

  159. Kim JH et al (2012) Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res 52(2):244–252

    Article  CAS  PubMed  Google Scholar 

  160. Zemła A et al (2017) Melatonin synergizes the chemotherapeutic effect of cisplatin in ovarian cancer cells independently of MT1 melatonin receptors. In vivo 31(5):801–809

    PubMed  PubMed Central  Google Scholar 

  161. Akbarzadeh M et al (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  162. Scarinci IC et al (2010) Cervical cancer prevention: new tools and old barriers. Cancer Interdiscip Int J Am Cancer Soc 116(11):2531–2542

    Google Scholar 

  163. Pariente R et al (2016) Melatonin sensitizes human cervical cancer H e L a cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60(1):55–64

    Article  CAS  PubMed  Google Scholar 

  164. Sainz R et al (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci CMLS 60(7):1407–1426

    Article  CAS  PubMed  Google Scholar 

  165. Dauchy RT et al (2012) Melatonin inhibition of linoleic acid transport and 13-HODE production in HeLa human cervical adenocarcinoma occurs via receptor-mediated signal transduction. AACR 5167

  166. Dauchy RT et al (2013) The circadian neurohormone melatonin inhibits aerobic glycolysis (Warburg effect) and fatty acid metabolic signaling in human colorectal and cervical cancer. AACR 4001

  167. Cohen MV, Downey JM (2017) The impact of irreproducibility and competing protection from P2Y 12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol 112(6):64

    Article  PubMed  Google Scholar 

  168. Boga JA et al (2019) Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. J Pineal Res 66(1):e12534

    Article  PubMed  Google Scholar 

  169. Zhao Q, Wang W, Cui J (2019) Melatonin enhances TNF-α-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell Int 19(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhao Q, Wang W, Cui J (2019) Melatonin enhances TNF-α-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell Int 19(1):1–12

    Article  Google Scholar 

  171. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  172. McAlpine JN, Temkin SM, Mackay HJ (2016) Endometrial cancer: not your grandmother’s cancer. Cancer 122(18):2787–2798

    Article  PubMed  Google Scholar 

  173. Kanishi Y et al (2000) Differential growth inhibitory effect of melatonin on two endometrial cancer cell lines. J Pineal Res 28(4):227–233

    Article  CAS  PubMed  Google Scholar 

  174. Karasek M, Kowalski AJ, Zylinska K (2000) Serum melatonin circadian profile in women suffering from the genital tract cancers. Neuroendocrinol Lett 21(2):109–114

    CAS  PubMed  Google Scholar 

  175. Viswanathan AN, Hankinson SE, Schernhammer ES (2007) Night shift work and the risk of endometrial cancer. Cancer Res 67(21):10618–10622

    Article  CAS  PubMed  Google Scholar 

  176. Sturgeon SR et al (2012) Sleep duration and endometrial cancer risk. Cancer Causes Control 23(4):547–553

    Article  PubMed  Google Scholar 

  177. Ciortea R et al (2011) Effect of melatonin on intra-abdominal fat in correlation with endometrial proliferation in ovariectomized rats. Anticancer Res 31(8):2637–2643

    CAS  PubMed  Google Scholar 

  178. King A, Selak M, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25(34):4675–4682

    Article  CAS  PubMed  Google Scholar 

  179. Gu C et al (2020) Melatonin alleviates progression of uterine endometrial cancer by suppressing estrogen/ubiquitin C/SDHB-mediated succinate accumulation. Cancer Lett 476:34–47

    Article  CAS  PubMed  Google Scholar 

  180. Guzy RD et al (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28(2):718–731

    Article  CAS  PubMed  Google Scholar 

  181. Saxena N et al (2016) SDHB-deficient cancers: the role of mutations that impair iron sulfur cluster delivery. JNCI J Natl Cancer Inst 108(1):djv287

    Article  Google Scholar 

  182. Kobayashi Y et al (2003) Melatonin binding sites in estrogen receptor-positive cells derived from human endometrial cancer. J Pineal Res 35(2):71–74

    Article  CAS  PubMed  Google Scholar 

  183. Osanai K et al (2017) Ramelteon, a selective MT1/MT2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells. Hum Cell 30(3):209–215

    Article  CAS  PubMed  Google Scholar 

  184. Umar A, Dunn BK, Greenwald P (2012) Future directions in cancer prevention. Nat Rev Cancer 12(12):835–848

    Article  CAS  PubMed  Google Scholar 

  185. Vijayalaxmi G et al (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20(10):2575–2601

    Article  CAS  PubMed  Google Scholar 

  186. Liu R et al (2013) Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol 14(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xiang S et al (2020) Retinoic acid-related orphan receptor alpha 1 (RORα1) induction of AKR1C3 promotes MCF-7 breast cancer cell proliferation and tamoxifen-resistance which is suppressed by melatonin. Melatonin Res 3(1):81–100

    Article  Google Scholar 

  188. Bartsch C et al (1989) Stage-dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer 64(2):426–433

    Article  CAS  PubMed  Google Scholar 

  189. Cutando A et al (2012) Role of melatonin in cancer treatment. Anticancer Res 32(7):2747–2753

    CAS  PubMed  Google Scholar 

  190. Wang P et al (2015) Night-shift work, sleep duration, daytime napping, and breast cancer risk. Sleep Med 16(4):462–468

    Article  PubMed  Google Scholar 

  191. Sanchez-Barcelo JE et al (2012) Breast cancer therapy based on melatonin. Recent Patents Endocr Metab Immune Drug Discov 6(2):108–116

    Article  CAS  Google Scholar 

  192. Shafabakhsh R et al (2019) Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol 234(12):21670–21682

    Article  CAS  PubMed  Google Scholar 

  193. Baboo KD, Chen Z-Y, Zhang X-M (2019) Role of oxidative stress and antioxidant therapies in endometriosis. Reprod Dev Med 3(3):170

    Article  Google Scholar 

  194. Yang M et al (2017) Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development: mechanisms and results. Molecules 22(12):2059

    Article  PubMed Central  Google Scholar 

  195. Lee S et al (2017) Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res 63(3):e12424

    Article  Google Scholar 

  196. Zhao XM et al (2018) Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J Pineal Res 64(1):e12445

    Article  Google Scholar 

  197. Ezzati M, Roshangar L, Soleimani J (2018) Evaluating the effect of melatonin on HAS2, and PGR expression, as well as cumulus expansion, and fertility potential in mice. Cell J (Yakhteh) 20(1):108

    Google Scholar 

  198. Chen Z et al (2017) Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim Sci J 88(9):1298–1310

    Article  CAS  PubMed  Google Scholar 

  199. Fang Y et al (2018) Melatonin-mediated development of ovine cumulus cells, perhaps by regulation of DNA methylation. Molecules 23(2):494

    Article  PubMed Central  Google Scholar 

  200. Liu P et al (2020) Melatonin regulates breast cancer progression by the lnc010561/miR-30/FKBP3 axis. Mol Ther Nucleic Acids 19:765–774

    Article  CAS  PubMed  Google Scholar 

  201. Marques JH et al (2018) Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: in vivo and in vitro studies. Life Sci 208:131–138

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ezzati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati, M., Velaei, K. & Kheirjou, R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 476, 3177–3190 (2021). https://doi.org/10.1007/s11010-021-04151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04151-z

Keywords

Navigation