Skip to main content
Log in

Characterization of adipocyte stress response pathways during hibernation in thirteen-lined ground squirrels

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To avoid the harsh conditions of winter climates, hibernating mammals undergo a systematic depression of physiological function by reducing their metabolic rate. During this process, hibernators are exposed to significant stresses (e.g., low body temperature, ischemia–reperfusion) that must be dealt with appropriately to avoid irreversible tissue damage. Consequently, we investigated the contribution of stress-responsive antioxidant enzymes, heat shock proteins, signal transduction pathways (e.g., mitogen-activated protein kinases, MAPK), and transcription factors for their role in conferring tolerance to stress in the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus). Using a combination of multiplex protein panels and traditional immunoblotting procedures, we have focused on these stress factors in brown adipose tissue (BAT) and white adipose tissue (WAT) over cycles of torpor-arousal since they provide the means for heat production as a result of non-shivering thermogenesis and the mobilization of critical energy reserves, respectively. We show the differential and tissue-specific regulation of stress factors including a unified upregulation of the antioxidant enzyme Thioredoxin 1 in both tissues, an upregulation of superoxide dismutase (SOD1 and SOD2) in WAT, and an increase in heat shock proteins during the transitory periods of the torpor-arousal cycle (HSP90α in BAT and HSP60 in WAT). Additionally, an upregulation of the active form of ERK1/2 and p38 in BAT and select transcription factors (e.g., CREB-1 and ELK-1) in both tissues were identified. These data provide us with greater insight into the molecular mechanisms responsible for this animal’s natural stress tolerance and outline molecular signatures which define stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4):1153–1181

    CAS  PubMed  Google Scholar 

  2. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66(1):239–274

    Article  CAS  PubMed  Google Scholar 

  3. Storey KB (2010) Out cold: biochemical regulation of mammalian hibernation—a mini-review. Gerontology 56(2):220–230

    Article  PubMed  Google Scholar 

  4. Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25(1):469–497

    Article  CAS  PubMed  Google Scholar 

  5. Eddy SF, Storey KB (2004) Up-regulation of fatty acid-binding proteins during hibernation in the little brown bat, Myotis lucifugus. Biochim Biophys Acta 1676(1):63–70

    Article  CAS  PubMed  Google Scholar 

  6. Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. Adv Clin Chem 52:77–108

    Article  CAS  PubMed  Google Scholar 

  7. Von der Ohe CG, Darian-Smith C, Garner CC, Heller HC (2006) Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 26(41):10590–10598

    Article  PubMed  Google Scholar 

  8. Storey KB (2003) Mammalian hibernation: transcriptional and translational controls. In: Roach RC, Wagner PD, Hackett PH (eds) Hypoxia: through the lifecycle. Advances in experimental medicine and biology, vol 543. Kluwer/Plenum Academic, New York, pp 21–38

    Chapter  Google Scholar 

  9. Storey KB, Storey JM (2007) Tribute to P. L. Lutz: putting life on ‘pause’—molecular regulation of hypometabolism. J Exp Biol 210(Pt 10):1700–1714

    Article  CAS  PubMed  Google Scholar 

  10. Allan ME, Storey KB (2012) Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem Funct 30(2):166–174

    Article  CAS  PubMed  Google Scholar 

  11. Morin P, Storey KB (2007) Antioxidant defense in hibernation: cloning and expression of peroxiredoxins from hibernating ground squirrels, Spermophilus tridecemlineatus. Arch Biochem Biophys 461(1):59–65

    Article  CAS  PubMed  Google Scholar 

  12. Vucetic M, Stancic A, Otasevic V et al (2013) The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Free Radic Biol Med 65C:916–924

    Article  Google Scholar 

  13. Storey K, Storey JM (2011) Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation. RRB 2:57–68

    Article  CAS  Google Scholar 

  14. Rouble AN, Hefler J, Mamady H, Storey KB, Tessier SN (2013) Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation. PeerJ 1:e29

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11(11):834–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lawrence MC, Jivan A, Shao C et al (2008) The roles of MAPKs in disease. Cell Res 18(4):436–442

    Article  CAS  PubMed  Google Scholar 

  17. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633

    Article  CAS  PubMed  Google Scholar 

  18. Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109

    Article  PubMed  Google Scholar 

  19. Chen Y, Zhang J, Lin Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12(6):534–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rothgiesser KM, Erener S, Waibel S, Lüscher B, Hottiger MO (2010) SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 123(Pt 24):4251–4258

    Article  CAS  PubMed  Google Scholar 

  21. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  PubMed  Google Scholar 

  22. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  23. Wegele H, Müller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  CAS  PubMed  Google Scholar 

  24. Kleinridders A, Lauritzen HP, Ussar S et al (2013) Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J Clin Invest 123(11):4667–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Magnoni R, Palmfeldt J, Hansen J, Christensen JH, Corydon TJ, Bross P (2013) The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radic Res 48(2):168–179

    Article  PubMed  Google Scholar 

  26. Corydon TJ, Hansen J, Bross P, Jensen TG (2005) Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab 85(4):260–270

    Article  CAS  PubMed  Google Scholar 

  27. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405

    Article  CAS  PubMed  Google Scholar 

  28. Bardwell L (2006) Mechanisms of MAPK signalling specificity. Biochem Soc Trans 34(Pt 5):837–841

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15(1):36–42

    Article  PubMed  Google Scholar 

  30. Gutiérrez-uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A (2012) p38α mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway. J Biol Chem 287(4):2632–2642

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kuwabara M, Asanuma T, Niwa K, Inanami O (2008) Regulation of cell survival and death signals induced by oxidative stress. J Clin Biochem Nutr 43(2):51–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58(11):621–631

    Article  CAS  PubMed  Google Scholar 

  33. Cao W, Daniel KW, Robidoux J et al (2004) p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24(7):3057–3067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Collins S, Bordicchia M (2013) Heart hormones fueling a fire in fat. Adipocyte 2(2):104–108

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lindquist JM, Rehnmark S (1998) Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J Biol Chem 273(46):30147–30156

    Article  CAS  PubMed  Google Scholar 

  36. Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274(8):5038–5046

    Article  CAS  PubMed  Google Scholar 

  37. Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780(11):1325–1336

    Article  CAS  PubMed  Google Scholar 

  38. Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wu CW, Storey KB (2012) Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle 11(9):1714–1726

    Article  CAS  PubMed  Google Scholar 

  40. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  CAS  PubMed  Google Scholar 

  41. Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J (2011) Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 5:35

    Article  PubMed Central  PubMed  Google Scholar 

  42. Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M (2003) CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 426(6963):190–193

    Article  CAS  PubMed  Google Scholar 

  43. Lee B, Cao R, Choi YS et al (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108(5):1251–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Demir O, Aysit N, Onder Z et al (2011) ETS-domain transcription factor Elk-1 mediates neuronal survival: SMN as a potential target. Biochim Biophys Acta 1812(6):652–662

    Article  CAS  PubMed  Google Scholar 

  45. O’Donnell A, Odrowaz Z, Sharrocks AD (2012) Immediate-early gene activation by the MAPK pathways: what do and don’t we know? Biochem Soc Trans 40(1):58–66

    Article  PubMed  Google Scholar 

  46. Hirota K, Matsui M, Murata M et al (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 274(1):177–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. JM Hallenbeck and Dr. DC McMullen (NINDS, NIH, Bethesda) for providing the tissue samples for this study. Thanks also to JM Storey for editorial review of the manuscript. This research was supported by a discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to KBS and the Canada Research Chairs program. ANR held a NSERC CGSM scholarship and SNT held a NSERC PGSD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouble, A.N., Tessier, S.N. & Storey, K.B. Characterization of adipocyte stress response pathways during hibernation in thirteen-lined ground squirrels. Mol Cell Biochem 393, 271–282 (2014). https://doi.org/10.1007/s11010-014-2070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2070-y

Keywords

Navigation