Skip to main content
Log in

FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The torpor–arousal cycle of mammalian hibernation is characterized by drastic changes in physiological state that are supported by reprogramming of metabolic functions. The entrance and arousal phases of the cycle function as transitional stages, where major changes in oxygen metabolism take place. Acute changes in oxygen delivery can lead to either ischemia-related injuries during torpor induction or reperfusion damage during arousal. This study examines the regulation of the forkhead box O3 (FoxO3) transcription factor, which functions to increase cellular cytoprotection in response to oxidative stress stimuli. Immunoblots show that total expression of FoxO3a was elevated during early torpor (ET) and late torpor by 3.6- and 4.5-fold, respectively, compared to euthermic control. However, enhanced phosphorylation of FoxO3a at Thr-32 was only evident during ET by 1.5-fold, accompanied by increased phosphorylation of c-Jun N-terminal kinases by 1.2-fold. During ET, increased nuclear inclusion of FoxO3a was evident along with its transcriptional co-activator β-catenin by 1.9- and 2.7-fold, respectively. As well, FoxO3a DNA binding was elevated by 1.8-fold during ET, along with increased expression of FoxO3a downstream genes catalase, p27, and cyclin G 2 , by 1.4-, 1.6-, and 1.3-fold, respectively. Overall, the results indicate activation of FoxO3a during ET, suggesting a role of FoxO3a in response to cellular stress during hibernation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang LCH, Wolowyk MW (1987) Torpor in mammals and birds. Can J Zool 66:133–137

    Article  Google Scholar 

  2. Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141(3):317–329

    Article  PubMed  Google Scholar 

  3. McArthur MD, Milsom WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64:940–959

    Google Scholar 

  4. Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95(24):14511–14516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    Article  PubMed  CAS  Google Scholar 

  6. Morin P Jr, Storey KB (2006) Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53(3):310–318

    Article  PubMed  CAS  Google Scholar 

  7. Brown JC, Chung DJ, Belgrave KR, Staples JF (2012) Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 302(1):R15–R28

    Article  PubMed  CAS  Google Scholar 

  8. Wu CW, Storey KB (2012) Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle 11(9):1714–1726

    Article  PubMed  CAS  Google Scholar 

  9. Wu CW, Storey KB (2012) Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels. J Exp Biol 215(Pt 10):1720–1727

    Article  PubMed  CAS  Google Scholar 

  10. Wu CW, Reardon AJ, Storey KB (2013) Effects of hibernation on regulation of mammalian protein phosphatase type-2-A. Cryobiology 66(3):267–274

    Article  PubMed  CAS  Google Scholar 

  11. Allan ME, Storey KB (2012) Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem Funct 30(2):166–174

    Article  PubMed  CAS  Google Scholar 

  12. Morin P Jr, Storey KB (2007) Antioxidant defense in hibernation: cloning and expression of peroxiredoxins from hibernating ground squirrels, Spermophilus tridecemlineatus. Arch Biochem Biophys 461(1):59–65

    Article  PubMed  CAS  Google Scholar 

  13. Fishman AP, Lyman CP (1961) Hibernation in mammals. Circulation 24:434–445

    Article  Google Scholar 

  14. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Chen WR, Xing D (2012) A pathway from JNK through decreased ERK and Akt activities for FOXO3a nuclear translocation in response to UV irradiation. J Cell Physiol 227(3):1168–1178

    Article  PubMed  CAS  Google Scholar 

  16. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  PubMed  CAS  Google Scholar 

  17. Tzivion G, Dobson M, Ramakrishnan G (2010) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813(11):1938–1945

    Article  Google Scholar 

  18. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2):126–136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Iordanov MS, Magun BE (1999) Different mechanisms of c-Jun NH(2)-terminal kinase-1 (JNK1) activation by ultraviolet-B radiation and by oxidative stressors. J Biol Chem 274(36):25801–25806

    Article  PubMed  CAS  Google Scholar 

  20. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308(5725):1181–1184

    Article  PubMed  CAS  Google Scholar 

  21. Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121(1):115–125

    Article  PubMed  CAS  Google Scholar 

  22. Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ (2012) JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 3:265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Abnous K, Dieni CA, Storey KB (2012) Suppression of MAPKAPK2 during mammalian hibernation. Cryobiology 65(3):235–241

    Article  PubMed  CAS  Google Scholar 

  24. James RS, Staples JF, Brown JC, Tessier SN, Storey KB (2013) The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. J Exp Biol 216(14):2587–2594

    Article  PubMed  Google Scholar 

  25. Morin P Jr, Ni Z, McMullen DC, Storey KB (2008) Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol Cell Biochem 312(1–2):121–129

    Article  PubMed  CAS  Google Scholar 

  26. McMullen DC, Hallenbeck JM (2010) Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus. J Comp Physiol B 180(6):927–934

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Dérijard B (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30(2):470–480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4):1153–1181

    PubMed  CAS  Google Scholar 

  29. Wells LA (1971) Circulatory pattern of hibernators. Am J Physiol 211(5):1517–1520

    Google Scholar 

  30. Rogers LL, Durst SC (1987) Evidence that black bears reduce peripheral blood flow during hibernation. J Mamm 68(4):878–879

    Article  Google Scholar 

  31. Karoon P, Knight G, Burnstock G (1998) Enhanced vasoconstrictor responses in renal and femoral arteries of the golden hamster during hibernation. J Physiol 512(3):927–938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14(2):83–97

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Tang N, Hadden TJ, Rishi AK (1813) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 11:1978–1986

    Google Scholar 

  34. Abnous K, Dieni CA, Storey KB (2008) Regulation of Akt during hibernation in Richardson’s ground squirrels. Biochim Biophys Acta 1780(2):185–193

    Article  PubMed  CAS  Google Scholar 

  35. Fleck CC, Carey HV (2005) Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Physiol Regul Integr Comp Physiol 289(2):R586–R595

    Article  PubMed  CAS  Google Scholar 

  36. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23(24):4802–4812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 102(12):4494–4499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Aikin R, Maysinger D, Rosenberg L (2004) Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145(10):4522–4531

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt KE, Kelley KM (2001) Down-regulation in the insulin-like growth factor (IGF) axis during hibernation in the golden-mantled ground squirrel, Spermophilus lateralis: IGF-I and the IGF-binding proteins (IGFBPs). J Exp Zool 289(1):66–73

    Article  PubMed  CAS  Google Scholar 

  40. MacDonald JA, Storey KB (2005) Mitogen-activated protein kinases and selected downstream targets display organ-specific responses in the hibernating ground squirrel. Int J Biochem Cell Biol 37(3):679–691

    Article  PubMed  CAS  Google Scholar 

  41. Morin P Jr, Storey KB (2009) Mammalian hibernation: differential gene expression and novel application of epigenetic controls. Int J Dev Biol 53(2–3):433–442

    Article  PubMed  CAS  Google Scholar 

  42. Storey KB (2010) Out cold: biochemical regulation of mammalian hibernation—a mini-review. Gerontology 56(2):220–230

    Article  PubMed  Google Scholar 

  43. Storey KB, Storey JM (2004) Mammalian hibernation: biochemical adaptation and gene expression. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley-Liss, Hoboken, pp 443–471

    Chapter  Google Scholar 

  44. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70

    Article  PubMed  CAS  Google Scholar 

  45. Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC (2004) Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol 24(5):2181–2189

    Article  PubMed Central  PubMed  Google Scholar 

  46. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  47. Bennin DA, Don AS, Brake T, McKenzie JL, Rosenbaum H, Ortiz L, DePaoli-Roach AA, Horne MC (2002) Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B′ subunits in active complexes and induces nuclear aberrations and a G1/S phase cell cycle arrest. J Biol Chem 277(30):27449–27467

    Article  PubMed  CAS  Google Scholar 

  48. Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F (2007) p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 6(9):1053–1061

    Article  PubMed  CAS  Google Scholar 

  49. Kruman II, Kolaeva SG, Iljasova EN, Zubrikhina GN, Khachko VN, Petrova AS (1986) Seasonal variations of DNA synthesis in intestinal epithelial cells of hibernating animals—I. DNA synthesis in intestinal epithelial cells of ground squirrel (Citellus undulatus) during deep hibernation. Comp Biochem Physiol B 83(1):173–177

    PubMed  CAS  Google Scholar 

  50. Sun J, Marx SO, Chen HJ, Poon M, Marks AR, Rabbani LE (2001) Role for p27(Kip1) in vascular smooth muscle cell migration. Circulation 103(24):2967–2972

    Article  PubMed  CAS  Google Scholar 

  51. Lees SJ, Childs TE, Booth FW (2008) Age-dependent FOXO regulation of p27Kip1 expression via a conserved binding motif in rat muscle precursor cells. Am J Physiol Cell Physiol 295(5):C1238–C1246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Carey HV, Frank CL, Seifert JP (2000) Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine. J Comp Physiol B 170(7):551–559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to J. M. Storey for editorial review of the manuscript. We are also grateful to Dr. J. M. Hallenbeck for providing the ground squirrel tissues used in this study. Research in the Storey Laboratory is supported by a Discovery Grant from NSERC Canada. Kenneth B. Storey holds the Canada Research Chair in Molecular Physiology; Cheng-Wei Wu holds a NSERC PGS-D postgraduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CW., Storey, K.B. FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator. Mol Cell Biochem 390, 185–195 (2014). https://doi.org/10.1007/s11010-014-1969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1969-7

Keywords

Navigation