Skip to main content

Advertisement

Log in

Silencing Pax3 by shRNA inhibits the proliferation and differentiation of duck (Anas platyrhynchos) myoblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    Article  CAS  PubMed  Google Scholar 

  2. Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47

    Article  CAS  PubMed  Google Scholar 

  3. Young AP, Wagers AJ (2010) Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors. J Cell Sci 123:2632–2639

    Article  CAS  PubMed  Google Scholar 

  4. Tremblay P, Gruss P (1994) Pax: genes for mice and men. Pharmacol Ther 61:205–226

    Article  CAS  PubMed  Google Scholar 

  5. Koblar SA, Murphy M, Barrett GL, Underhill A, Gros P, Bartlett PF (1999) Pax‐3 regulates neurogenesis in neural crest‐derived precursor cells. J Neurosci Res 56:518–530

    Article  CAS  PubMed  Google Scholar 

  6. Kuang S, Chargé SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    Article  CAS  PubMed  Google Scholar 

  7. Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785–796

    CAS  PubMed  Google Scholar 

  8. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed  Google Scholar 

  9. Henderson DJ, Conway SJ, Copp AJ (1999) Rib Truncations and Fusions in the Sp2H mouse reveal a role for Pax3 in specification of the ventro-lateral and posterior parts of the somite. Dev Biol 209:143–158

    Article  CAS  PubMed  Google Scholar 

  10. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  11. Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120:957–971

    CAS  PubMed  Google Scholar 

  12. Bober E, Franz T, Arnold H-H, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120:603–612

    CAS  PubMed  Google Scholar 

  13. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the Genetic Hierarchies Controlling Skeletal Myogenesis: Pax-3 and Myf-5 Act Upstream of MyoD. Cell 89:127–138

    Article  CAS  PubMed  Google Scholar 

  14. Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12:349–361

    Article  CAS  PubMed  Google Scholar 

  15. Maroto M, Reshef R, Münsterberg AE, Koester S, Goulding M, Lassar AB (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89:139–148

    Article  CAS  PubMed  Google Scholar 

  16. Mennerich D, Braun T (2001) Activation of myogenesis by the homeobox gene Lbx1 requires cell proliferation. EMBO J 20:7174–7183

    Article  CAS  PubMed  Google Scholar 

  17. Darabi R, Santos FN, Filareto A, Pan W, Koene R, Rudnicki MA, Kyba M, Perlingeiro RC (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7‐induced embryonic stem cell‐derived progenitors. Stem cells 29:777–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730

    Article  CAS  PubMed  Google Scholar 

  19. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2004) Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 18:1088–1105

    Article  CAS  PubMed  Google Scholar 

  20. Brzóska E, Przewoźniak M, Grabowska I, Jańczyk‐Ilach K, Moraczewski J (2009) Pax3 and Pax7 expression during myoblast differentiation in vitro and fast and slow muscle regeneration in vivo. Cell Biol Int 33:483–492

    Article  PubMed  Google Scholar 

  21. Ichi S, Nakazaki H, Boshnjaku V, Singh RM, Mania-Farnell B, Xi G, McLone DG, Tomita T, Mayanil CSK (2011) Fetal neural tube stem cells from Pax3 mutant mice proliferate, differentiate, and form synaptic connections when stimulated with folic acid. Stem Cells Dev 21:321–330

    Article  PubMed  Google Scholar 

  22. Wlodarczyk BJ, Tang LS, Triplett A, Aleman F, Finnell RH (2006) Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients. Toxicol Appl Pharmacol 213:55–63

    Article  CAS  PubMed  Google Scholar 

  23. Burren KA, Savery D, Massa V, Kok RM, Scott JM, Blom HJ, Copp AJ, Greene ND (2008) Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Hum Mol Genet 17:3675–3685

    Article  CAS  PubMed  Google Scholar 

  24. Liu H-h, Li L, Chen X, Cao W, Zhang R-p, Yu H-y, Xu F, He H, Wang J-w (2011) Characterization of in vitro cultured myoblasts isolated from duck (Anas platyrhynchos) embryo. Cytotechnology 63:399–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Borycki A, Li J, Jin F, Emerson C, Epstein J (1999) Pax3 functions in cell survival and in pax7 regulation. Development 126:1665–1674

    CAS  PubMed  Google Scholar 

  27. Tripathi AK, Aparnathi MK, Vyavahare SS, Ramani UV, Rank DN, Joshi CG (2012) Myostatin gene silencing by RNA interference in chicken embryo fibroblast cells. J Biotechnol 160:140–145

    Article  CAS  PubMed  Google Scholar 

  28. Stewart CK, Li J, Golovan SP (2008) Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochem Biophys Res Commun 370:113–117

    Article  CAS  PubMed  Google Scholar 

  29. Bhagavati S, Song X, Siddiqui M (2007) RNAi inhibition of Pax3/7 expression leads to markedly decreased expression of muscle determination genes. Mol Cell Biochem 302:257–262

    Article  CAS  PubMed  Google Scholar 

  30. Cornelison D, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    Article  CAS  PubMed  Google Scholar 

  31. Olguín HC, Pisconti A (2012) Marking the tempo for myogenesis: pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 16:1013–1025

    Article  PubMed  Google Scholar 

  32. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  CAS  PubMed  Google Scholar 

  33. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Agriculture Research Service (No.CARS-43-6) and the Breeding of Multiple Crossbreeding System in waterfowl (2011NZ0099-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, RP., Liu, HH., Wang, HH. et al. Silencing Pax3 by shRNA inhibits the proliferation and differentiation of duck (Anas platyrhynchos) myoblasts. Mol Cell Biochem 386, 211–222 (2014). https://doi.org/10.1007/s11010-013-1859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1859-4

Keywords

Navigation