Skip to main content
Log in

Extracellular inosine participates in tumor necrosis factor-alpha induced nitric oxide production in cultured Sertoli cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent reports have described purinergic modulation of tumor necrosis factor-alpha (TNF-α) signaling in neutrophils and astrocytes. In Sertoli cells, both TNF-R1 and TNF-R2 TNF-α receptors are present and this cytokine modulates many functions of these cells related to the maintenance of spermatogenesis. Sertoli cells express distinct purinoreceptors and previous work has shown that these cells secrete extracellular nucleotides and their metabolites. In this work, we studied the possible role of extracellular purines in TNF-α signaling in cultured Sertoli cells. This cytokine increased inosine concentration from 30 min to 6 h, with no effect at 24 h. Both TNF-α and inosine increased nitrite accumulation and nitric oxide synthase activity. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an adenosine deaminase inhibitor, abolished the TNF-α induced inosine increase, nitrite accumulation and nitric oxide synthase activity. These results suggest that extracellular inosine acts as intermediary in TNF-α stimulated nitric oxide production in cultured Sertoli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372–377, 2001

    Article  PubMed  CAS  Google Scholar 

  2. MacEwan DJ: TNF receptor subtype signaling: differences and cellular consequences. Cell Signal 14: 477–492, 2002

    Article  PubMed  CAS  Google Scholar 

  3. De SK, Chen HL, Pace JL, Hunt JS, Terranova PF, Enders GC: Expression of tumor necrosis factor-alpha in mouse spermatogenic cells. Endocrinology 133: 389–396, 1993

    Article  PubMed  CAS  Google Scholar 

  4. Xiong Y, Hales DB: Expression, regulation, and production of tumor necrosis factor-alpha in mouse testicular interstitial macrophages in vitro. Endocrinology 133: 2568–2573, 1993

    Article  PubMed  CAS  Google Scholar 

  5. Moore C, Hutson JC: Physiological relevance of tumor necrosis factor in mediating macrophage-Leydig cell interactions. Endocrinology 134: 63–69, 1994

    Article  PubMed  CAS  Google Scholar 

  6. Mauduit C, Besset V, Caussanel V, Benahmed M: Tumor necrosis factor alpha receptor p55 is under hormonal (follicle-stimulating hormone) control in testicular Sertoli cells. Biochem Biophys Res Commun 224: 631–637, 1996

    Article  PubMed  CAS  Google Scholar 

  7. De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E: Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression. J Biol Chem 274: 28978–28982, 1999

    Article  PubMed  CAS  Google Scholar 

  8. Nehar D, Mauduit C, Boussouar F, Benahmed M: Tumor necrosis factor-alpha-stimulated lactate production is linked to lactate dehydrogenase A expression and activity increase in porcine cultured Sertoli cells. Endocrinology 138: 1964–1971, 1997

    Article  PubMed  CAS  Google Scholar 

  9. Riccioli A, Filippini A, De Cesaris P, Barbacci E, Stefanini M, Starace G, Ziparo E: Inflammatory mediators increase surface expression of integrin ligands, adhesion to lymphocytes, and secretion of interleukin 6 in mouse Sertoli cells. Proc Natl Acad Sci USA 92: 5808–5812, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Le Magueresse-Battistoni B, Morera AM, Benahmed M: In vitro regulation of rat Sertoli cell inhibin messenger RNA levels by transforming growth factor-beta 1 and tumour necrosis factor alpha. J Endocrinol 146: 501–508, 1995

    Article  PubMed  CAS  Google Scholar 

  11. Sigillo F, Guillou F, Fontaine I, Benahmed M, Le Magueresse-Battistoni B: In vitro regulation of rat Sertoli cell transferrin expression by tumor necrosis factor alpha and retinoic acid. Mol Cell Endocrinol 148: 163–170, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Besset V, Le Magueresse-Battistoni B, Collette J, Benahmed M: Tumor necrosis factor alpha stimulates insulin-like growth factor binding protein 3 expression in cultured porcine Sertoli cells. Endocrinology 137: 296–303, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Mauduit C, Jaspar JM, Poncelet E, Charlet C, Revol A, Franchimont P, Benahmed M: Tumor necrosis factor-alpha antagonizes follicle-stimulating hormone action in cultured Sertoli cells. Endocrinology 133: 69–76, 1993

    Article  PubMed  CAS  Google Scholar 

  14. Pentikainen V, Erkkila K, Suomalainen L, Otala M, Pentikainen MO, Parvinen M, Dunkel L: TNFalpha down-regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J Clin Endocrinol Metab 86: 4480–4488, 2001

    Article  PubMed  CAS  Google Scholar 

  15. Siu MKY, Lee W, Will M, Cheng CY: The interplay of collagen IV, tumor necrosis factor-α, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 144: 371–387, 2003

    Article  PubMed  CAS  Google Scholar 

  16. Monaco L, Conti M: Localization of adenosine receptors in rat testicular cells. Biol Reprod 35: 258–266, 1986

    Article  PubMed  CAS  Google Scholar 

  17. Monaco L, DeManno DA, Martin MW, Conti M: Adenosine inhibition of the hormonal response in the Sertoli cell is reversed by pertussis toxin. Endocrinology 122: 2692–2698, 1988

    Article  PubMed  CAS  Google Scholar 

  18. Rivkees SA: Localization and characterization of adenosine receptor expression in rat testis. Endocrinology 135: 2307–2313, 1994

    Article  PubMed  CAS  Google Scholar 

  19. Filippini A, Riccioli A, De Cesaris P, Paniccia R, Teti A, Stefanini M, Conti M, Ziparo E: Activation of inositol phospholipid turnover and calcium signaling in rat Sertoli cells by P2-purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134: 1537–1545, 1994

    Article  PubMed  CAS  Google Scholar 

  20. Meroni SB, Canepa DF, Pellizzari EH, Schteingart HF, Cigorraga SB: Effects of purinergic agonists on aromatase and gamma-glutamyl transpeptidase activities and on transferrin secretion in cultured Sertoli cells. J Endocrinol 157: 275–283, 1998

    Article  PubMed  CAS  Google Scholar 

  21. Glass R, Bardini M, Robson T, Burnstock G: Expression of nucleotide P2X receptor subtypes during spermatogenesis in the adult rat testis. Cells Tissues Organs 169: 377–387, 2001

    Article  PubMed  CAS  Google Scholar 

  22. Casali EA, da Silva TR, Gelain DP, Kaiser GR, Battastini AM, Sarkis JJ, Bernard EA: Ectonucleotidase activities in Sertoli cells from immature rats. Braz J Med Biol Res 34: 1247–1256, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Gelain DP, De Souza LF, Bernard EA: Extracellular purines from cells of seminiferous tubules. Mol Cell Biochem 245: 1–9, 2003

    Article  PubMed  CAS  Google Scholar 

  24. Barnes CR, Mandell GL, Carper HT, Luong S, Sullivan GW: Adenosine modulation of tumor necrosis factor-alpha-induced neutrophil activation. Biochem Pharmacol 50: 1851–1857, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Liu JS, John GR, Sikora A, Lee SC, Brosnan CF: Modulation of interleukin-1beta and tumor necrosis factor alpha signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 20: 5292–5299, 2000

    PubMed  CAS  Google Scholar 

  26. Stephan JP, Guillemois C, Jegou B, Bauche F: Nitric oxide production by Sertoli cells in response to cytokines and lipopolysaccharide. Biochem Biophys Res Commun 213: 218–224, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Bauche F, Stephan JP, Touzalin AM, Jegou B: In vitro regulation of an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod 58: 431–438, 1998

    Article  PubMed  CAS  Google Scholar 

  28. Sperlagh B, Hasko G, Nemeth Z, Vizi ES: ATP released by LPS increases nitric oxide production in raw 264.7 macrophage cell line via P2Z/P2X7 receptors. Neurochem Int 33: 209–215, 1998

    Article  PubMed  CAS  Google Scholar 

  29. Min HW, Moochhala S, Eng KH: Adenosine and its receptor agonists regulate nitric oxide production and RAW 264.7 macrophages via both receptor binding and its downstream metabolites-inosine. Life Sci 66: 1781–1793, 2000

    Article  PubMed  CAS  Google Scholar 

  30. Ohtani Y, Minami M, Satoh M: Expression of inducible nitric oxide synthase mRNA and production of nitric oxide are induced by adenosine triphosphate in cultured rat microglia. Neurosci Lett 293: 72–74, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Liu J, Tian Z, Gao B, Kunos G: Dose-dependent activation of antiapoptotic and proapoptotic pathways by ethanol treatment in human vascular endothelial cells: differential involvement of adenosine. J Biol Chem 277: 20927–20933, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Tung PS, Fritz IB: Extracellular matrix promotes rat Sertoli cell histotypic expression in vitro. Biol Reprod 30: 213–229, 1984

    Article  PubMed  CAS  Google Scholar 

  33. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE: Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc Natl Acad Sci USA 90: 8103–8107, 1993

    Article  PubMed  CAS  Google Scholar 

  34. Bulotta S, Barsacchi R, Rotiroti D, Borgese N, Clementi E: Activation of the endothelial nitric-oxide synthase by tumor necrosis factor-alpha. A novel feedback mechanism regulating cell death. J Biol Chem 276: 6529–6536, 2001

    Article  PubMed  CAS  Google Scholar 

  35. Salter M, Knowles RG, Moncada S: Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett 291: 145–149, 1991

    Article  PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  37. Savic V, Stefanovic V, Ardaillou N, Ardaillou R: Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1 beta and tumour necrosis factor-alpha. Immunology 70: 321–326, 1990

    PubMed  CAS  Google Scholar 

  38. Kalsi K, Lawson C, Dominguez M, Taylor P, Yacoub MH, Smolenski, R T: Regulation of ecto-5′-nucleotidase by TNF-alpha in human endothelial cells. Mol Cell Biochem 232: 113–119, 2002

    Article  PubMed  CAS  Google Scholar 

  39. Miki K, Eddy EM: Tumor necrosis factor receptor 1 is an ATPase regulated by silencer of death domain. Mol Cell Biol 22: 2536–2543, 2002

    Article  PubMed  CAS  Google Scholar 

  40. Lee NP, Cheng CY: Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: An in vitro study. Endocrinology 144: 3114–3129, 2003

    Article  PubMed  CAS  Google Scholar 

  41. Jin X, Shepherd RK, Duling BR, Linden J: Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100: 2849–2857, 1997

    Article  PubMed  CAS  Google Scholar 

  42. Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH: Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. J Clin Invest 105: 361–367, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Aida Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, L.F., Gelain, D.P., Jardim, F.R. et al. Extracellular inosine participates in tumor necrosis factor-alpha induced nitric oxide production in cultured Sertoli cells. Mol Cell Biochem 281, 123–128 (2006). https://doi.org/10.1007/s11010-006-0639-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-0639-9

Keywords

Navigation