Skip to main content

Advertisement

Log in

Conference overview: Molecular mechanisms of metal toxicity and carcinogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic exposure to many heavy metals and metal-derivatives is associated with an increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis and presented the latest research concerning these mechanisms. Major areas of focus included exposure assessment and biomarker identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-induced DNA damage, metal signalling, and the development of animal models for use in metal toxicology studies. Here we highlight some of the research presented, and summarize the conference proceedings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Churg A, Brauer M, Carmen Avila-Casado M, Fortoul TI, Wright JL: Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 111: 714–718, 2003

    PubMed  Google Scholar 

  2. Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti M, Marchetti C, Abbritti G, Muzi G: Primary DNA damage in chrome-plating workers. Toxicology 188: 187–195, 2003

    PubMed  Google Scholar 

  3. Hunder G, Javdani J, Elsenhans B, Schumann K: 109Cd accumulation in the calcified parts of rat bones. Toxicology 159: 1–10, 2001

    Article  PubMed  Google Scholar 

  4. Tsai SM, Wang TN, Ko YC: Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health 54: 186–193, 1999

    PubMed  Google Scholar 

  5. Gaetke LM, Chow CK: Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147–163, 2003

    Article  PubMed  Google Scholar 

  6. Papanikolaou G, Pantopoulos K: Iron metabolism and toxicity. Toxicol Appl Pharmacol 202: 199–211, 2005

    PubMed  Google Scholar 

  7. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM: The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5: 344–350, 1993

    Article  PubMed  Google Scholar 

  8. Parkkila S, Waheed A, Britton RS, Bacon BR, Zhou XY, Tomatsu S, Fleming RE, Sly WS: Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 94: 13198–13202, 1997

    Article  PubMed  Google Scholar 

  9. Nair J, Carmichael PL, Fernando RC, Phillips DH, Strain AJ, Bartsch H: Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis. Cancer Epidemiol Biomarkers Prev 7: 435–440, 1998

    PubMed  Google Scholar 

  10. Feng Z, Hu W, Amin S, Tang MS: Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 42: 7848–7854, 2003

    Article  PubMed  Google Scholar 

  11. Benedetti A, Pompella A, Fulceri R, Romani A, Comporti M: 4-Hydroxynonenal and other aldehydes produced in the liver in vivo after bromobenzene intoxication. Toxicol Pathol 14: 457–461, 1986

    PubMed  Google Scholar 

  12. Bartsch H, Nair J, Velic I: Etheno-DNA base adducts as tools in human cancer aetiology and chemoprevention. Eur J Cancer Prev 6: 529–534, 1997

    PubMed  Google Scholar 

  13. McCullough ML, Giovannucci EL: Diet and cancer prevention. Oncogene 23: 6349–6364, 2004

    Article  PubMed  Google Scholar 

  14. Rohrmann S, Smit E, Giovannucci E, Platz EA: Association between serum concentrations of micronutrients and lower urinary tract symptoms in older men in the Third National Health and Nutrition Examination Survey. Urology 64: 504–509, 2004

    Article  PubMed  Google Scholar 

  15. Karunasinghe N, Ryan J, Tuckey J, Masters J, Jamieson M, Clarke LC, Marshall JR, Ferguson LR: DNA stability and serum selenium levels in a high-risk group for prostate cancer. Cancer Epidemiol Biomarkers Prev 13: 391–397, 2004

    PubMed  Google Scholar 

  16. Ames BN: DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 475: 7–20, 2001

    PubMed  Google Scholar 

  17. Goddard JG, Gower JD, Green CJ: A chelator is required for microsomal lipid peroxidation following reductive ferritin-iron mobilisation. Free Radic Res Commun 17: 177–185, 1992

    PubMed  Google Scholar 

  18. Reif DW, Simmons RD: Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283: 537–541, 1990

    Article  PubMed  Google Scholar 

  19. Winston GW, Feierman DE, Cederbaum AI: The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Arch Biochem Biophys 232: 378–390, 1984

    Article  PubMed  Google Scholar 

  20. Morgan EH: Studies on the mechanism of iron release from transferrin. Biochim Biophys Acta 580: 312–326, 1979

    PubMed  Google Scholar 

  21. Huang C, Li J, Zhang Q, Huang X: Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts. Am J Respir Cell Mol Biol 27: 568–574, 2002

    PubMed  Google Scholar 

  22. Zhang Q, Dai J, Ali A, Chen L, Huang X: Roles of bioavailable iron and calcium in coal dust-induced oxidative stress: Possible implications in coal workers' lung disease. Free Radic Res 36: 285–294, 2002

    Article  PubMed  Google Scholar 

  23. Katzer A, Hockertz S, Buchhorn GH, Loehr JF: In vitro toxicity and mutagenicity of CoCrMo and Ti6Al wear particles. Toxicology 190: 145–154, 2003

    Article  PubMed  Google Scholar 

  24. Leonard SS, Roberts JR, Antonini JM, Castranova V, Shi X: PbCrO4 mediates cellular responses via reactive oxygen species. Mol Cell Biochem 255: 171–179, 2004

    Article  PubMed  Google Scholar 

  25. Shi X, Flynn DC, Porter DW, Leonard SS, Vallyathan V, Castranova V: Efficacy of taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation. Ann Clin Lab Sci 27: 365–374, 1997

    PubMed  Google Scholar 

  26. Wang Y, Fang J, Leonard SS, Rao KM: Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36: 1434–1443, 2004

    Article  PubMed  Google Scholar 

  27. Leonard S, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi X: Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70: 239–244, 1998

    Article  PubMed  Google Scholar 

  28. Hei TK, Filipic M: Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med 37: 574–581, 2004

    Article  PubMed  Google Scholar 

  29. Lefebvre Y, Pezerat H: Reactive oxygen species produced from chromate pigments and ascorbate. Environ Health Perspect 102(Suppl 3): 243–245, 1994

    PubMed  Google Scholar 

  30. Wang S, Leonard SS, Ye J, Ding M, Shi X: The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation. Am J Physiol Cell Physiol 279: C868–C875, 2000

    PubMed  Google Scholar 

  31. Balamurugan K, Rajaram R, Ramasami T, Narayanan S: Chromium(III)-induced apoptosis of lymphocytes: Death decision by ROS and Src-family tyrosine kinases. Free Radic Biol Med 33: 1622–1640, 2002

    PubMed  Google Scholar 

  32. Petit A, Mwale F, Tkaczyk C, Antoniou J, Zukor DJ, Huk OL: Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26: 4416–4422, 2005

    Article  PubMed  Google Scholar 

  33. Chakrabarti SK, Bai C, Subramanian KS: DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids. Toxicol Appl Pharmacol 170: 153–165, 2001

    Article  PubMed  Google Scholar 

  34. Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y: Nickel-induced histone hypoacetylation: the role of reactive oxygen species. Toxicol Sci 74: 279–286, 2003

    Article  PubMed  Google Scholar 

  35. Lin C, Kang J, Zheng R: Oxidative stress is involved in inhibition of copper on histone acetylation in cells. Chem Biol Interact 151: 167–176, 2005

    Article  PubMed  Google Scholar 

  36. Bagchi D, Bagchi M, Stohs SJ: Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222: 149–158, 2001

    Article  PubMed  Google Scholar 

  37. Wang S, Leonard SS, Ye J, Gao N, Wang L, Shi X: Role of reactive oxygen species and Cr(VI) in Ras-mediated signal transduction. Mol Cell Biochem 255: 119–127, 2004

    Article  PubMed  Google Scholar 

  38. Newbold RF, Amos J, Connell JR: The cytotoxic, mutagenic and clastogenic effects of chromium-containing compounds on mammalian cells in culture. Mutat Res 67: 55–63, 1979

    Article  PubMed  Google Scholar 

  39. Wise JP, Leonard JC, Patierno SR: Clastogenicity of lead chromate particles in hamster and human cells. Mutat Res 278: 69–79, 1992

    Article  PubMed  Google Scholar 

  40. Wise JP, Sr., Wise SS, Little JE: The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517: 221–229, 2002

    PubMed  Google Scholar 

  41. Leonard SS, Vallyathan V, Castranova V, Shi X: Generation of reactive oxygen species in the enzymatic reduction of PbCrO4 and related DNA damage. Mol Cell Biochem 234–235: 309–315, 2002

    Article  Google Scholar 

  42. Han JY, Takeshita K, Utsumi H: Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic Biol Med 30: 516–525, 2001

    Article  PubMed  Google Scholar 

  43. Casillas AM, Hiura T, Li N, Nel AE: Enhancement of allergic inflammation by diesel exhaust particles: Permissive role of reactive oxygen species. Ann Allergy Asthma Immunol 83: 624–629, 1999

    PubMed  Google Scholar 

  44. Tsurudome Y, Hirano T, Yamato H, Tanaka I, Sagai M, Hirano H, Nagata N, Itoh H, Kasai H: Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in rat lungs after intratracheal administration of diesel exhaust particles. Carcinogenesis 20: 1573–1576, 1999

    Article  PubMed  Google Scholar 

  45. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, Baeza-Squiban A: Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285: L671–L679, 2003

    PubMed  Google Scholar 

  46. Siegel PD, Saxena RK, Saxena QB, Ma JK, Ma JY, Yin XJ, Castranova V, Al Humadi N, Lewis DM: Effect of diesel exhaust particulate (DEP) on immune responses: Contributions of particulate versus organic soluble components. J Toxicol Environ Health A 67: 221–231, 2004

    PubMed  Google Scholar 

  47. Schuetzle D: Sampling of vehicle emissions for chemical analysis and biological testing. Environ Health Perspect 47: 65–80, 1983

    PubMed  Google Scholar 

  48. Ichinose T, Furuyama A, Sagai M: Biological effects of diesel exhaust particles (DEP). II. Acute toxicity of DEP introduced into lung by intratracheal instillation. Toxicology 99: 153–167, 1995

    Article  PubMed  Google Scholar 

  49. Rah DK, Han DW, Baek HS, Hyon SH, Park JC: Prevention of reactive oxygen species-induced oxidative stress in human microvascular endothelial cells by green tea polyphenol. Toxicol Lett 155: 269–275, 2005

    Article  PubMed  Google Scholar 

  50. Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G: Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem 16: 144–149, 2005

    Article  PubMed  Google Scholar 

  51. Qanungo S, Das M, Haldar S, Basu A: Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis, 2005

  52. Zykova TA, Zhang Y, Zhu F, Bode AM, Dong Z: The signal transduction networks required for phosphorylation of STAT1 at Ser727 in mouse epidermal JB6 cells in the UVB response and inhibitory mechanisms of tea polyphenols. Carcinogenesis 26: 331–342, 2005

    Article  PubMed  Google Scholar 

  53. Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M: Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 2005

  54. McCord JM: The evolution of free radicals and oxidative stress. Am J Med 108: 652–659, 2000

    Article  PubMed  Google Scholar 

  55. Stahl W, Sies H: Antioxidant defense: Vitamins E and C and carotenoids. Diabetes 46(Suppl 2): S14–S18, 1997

    PubMed  Google Scholar 

  56. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J: Vitamin C exhibits pro-oxidant properties. Nature 392: 559, 1998

    Google Scholar 

  57. Herbert V, Shaw S, Jayatilleke E: Vitamin C-driven free radical generation from iron. J Nutr 126: 1213S–1220S, 1996

    PubMed  Google Scholar 

  58. Leonard SS, Cutler D, Ding M, Vallyathan V, Castranova V, Shi X: Antioxidant properties of fruit and vegetable juices: More to the story than ascorbic acid. Ann Clin Lab Sci 32: 193–200, 2002

    PubMed  Google Scholar 

  59. Pirozhkova-Patalah IV, Shtemenko NI: Influence of cis-[Re2GABA2Cl4]Cl2 on the antioxidant defense system parameters of normal human blood. Biochemistry (Mosc) 66: 721–724, 2001

    Article  Google Scholar 

  60. Hrynevych I, Oliinyk SA, Shtemenko NI, Shtemenko OV: Antioxidant properties of rhenium cluster complexes with butyric acid derivatives in blood plasma and erythrocytes. Ukr Biokhim Zh 75: 65–71, 2003

    PubMed  Google Scholar 

  61. Turner RJ, Weiner JH, Taylor DE: Selenium metabolism in Escherichia coli. Biometals 11: 223–227, 1998

    Article  PubMed  Google Scholar 

  62. Madesh M, Hajnoczky G: VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155: 1003–1015, 2001

    Article  PubMed  Google Scholar 

  63. Yan L, Spallholz JE: Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Biochem Pharmacol 45: 429–437, 1993

    PubMed  Google Scholar 

  64. ElAttar TM, Virji AS: Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation. Anticancer Drugs 10: 187–193, 1999

    PubMed  Google Scholar 

  65. Bau DT, Wang TS, Chung CH, Wang AS, Wang AS, Jan KY: Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110(Suppl 5): 753–756, 2002

    PubMed  Google Scholar 

  66. Matsui M, Nishigori C, Toyokuni S, Takada J, Akaboshi M, Ishikawa M, Imamura S, Miyachi Y: The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2′-deoxyguanosine in arsenic-related Bowen's disease. J Invest Dermatol 113: 26–31, 1999

    Article  PubMed  Google Scholar 

  67. Shibutani S, Takeshita M, Grollman AP: Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434, 1991

    Article  PubMed  Google Scholar 

  68. Grollman AP, Moriya M: Mutagenesis by 8-oxoguanine: An enemy within. Trends Genet 9: 246–249, 1993

    Article  PubMed  Google Scholar 

  69. Henderson PT, Delaney JC, Muller JG, Neeley WL, Tannenbaum SR, Burrows CJ, Essigmann JM: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 42: 9257–9262, 2003

    Article  PubMed  Google Scholar 

  70. Leipold MD, Muller JG, Burrows CJ, David SS: Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry 39: 14984–14992, 2000

    Article  PubMed  Google Scholar 

  71. Henderson PT, Delaney JC, Gu F, Tannenbaum SR, Essigmann JM: Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry 41: 914–921, 2002

    Article  PubMed  Google Scholar 

  72. Muller JG, Duarte V, Hickerson RP, Burrows CJ: Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine via oxidation by Ir (IV). Nucleic Acids Res 26: 2247–2249, 1998

    Article  PubMed  Google Scholar 

  73. Michaels ML, Tchou J, Grollman AP, Miller JH: A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry 31: 10964–10968, 1992

    Article  PubMed  Google Scholar 

  74. Michaels ML, Cruz C, Grollman AP, Miller JH: Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89: 7022–7025, 1992

    PubMed  Google Scholar 

  75. Hailer MK, Slade PG, Martin BD, Rosenquist TA, Sugden KD: Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst) 4: 41–50, 2005

    Article  Google Scholar 

  76. Ramon O, Sauvaigo S, Gasparutto D, Faure P, Favier A, Cadet J: Effects of 8-oxo-7,8-dihydro-2′-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic Res 31: 217–229, 1999

    PubMed  Google Scholar 

  77. Hailer-Morrison MK, Kotler JM, Martin BD, Sugden KD: Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2′-deoxyguanosine lesions in the NF-kappaB promoter element. Biochemistry 42: 9761–9770, 2003

    Article  PubMed  Google Scholar 

  78. Miller BM, Adler ID: Suspect spindle poisons: Analysis of c-mitotic effects in mouse bone marrow cells. Mutagenesis 4: 208–215, 1989

    PubMed  Google Scholar 

  79. Mateuca R, Aka PV, De Boeck M, Hauspie R, Kirsch-Volders M, Lison D: Influence of hOGG1, XRCC1 and XRCC3 genotypes on biomarkers of genotoxicity in workers exposed to cobalt or hard metal dusts. Toxicol Lett 156: 277–288, 2005

    Article  PubMed  Google Scholar 

  80. Kim YD, An SC, Oyama T, Kawamoto T, Kim H: Oxidative stress, hogg1 expression and NF-kappaB activity in cells exposed to low level chromium. J Occup Health 45: 271–277, 2003

    Article  PubMed  Google Scholar 

  81. Zharkov DO, Rosenquist TA: Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium(II): Implications for cadmium genotoxicity. DNA Repair (Amst) 1: 661–670, 2002

    Article  Google Scholar 

  82. Palmiter RD: Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA 91: 1219–1223, 1994

    PubMed  Google Scholar 

  83. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH: Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: Identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277: 20438–20445, 2002

    Article  PubMed  Google Scholar 

  84. Rosen BP: Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133: 689–693, 2002

    Article  PubMed  Google Scholar 

  85. Rosen BP: Biochemistry of arsenic detoxification. FEBS Lett 529: 86–92, 2002

    Article  PubMed  Google Scholar 

  86. Rosen BP, Hsu CM, Karkaria CE, Owolabi JB, Tisa LS: Molecular analysis of an ATP-dependent anion pump. Philos Trans R Soc Lond B Biol Sci 326: 455–463, 1990

    PubMed  Google Scholar 

  87. Liu Z, Boles E, Rosen BP: Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279: 17312–17318, 2004

    Article  PubMed  Google Scholar 

  88. Liu Z, Carbrey JM, Agre P, Rosen BP: Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316: 1178–1185, 2004

    Article  PubMed  Google Scholar 

  89. Bhattacharjee H, Carbrey J, Rosen BP, Mukhopadhyay R: Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun 322: 836–841, 2004

    Article  PubMed  Google Scholar 

  90. Lee TC, Ho IC: Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69: 498–504, 1995

    Article  PubMed  Google Scholar 

  91. Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Kim BK, Lee YY: Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem Biophys Res Commun 265: 400–404, 1999

    Article  PubMed  Google Scholar 

  92. Millar JB, Russell P: The cdc25 M-phase inducer: An unconventional protein phosphatase. Cell 68: 407–410, 1992

    Article  PubMed  Google Scholar 

  93. Chou IN: Distinct cytoskeletal injuries induced by As, Cd, Co, Cr, and Ni compounds. Biomed Environ Sci 2: 358–365, 1989

    PubMed  Google Scholar 

  94. Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X: Cdc42 regulates arsenic-induced NADPH oxidase activation and cell migration through actin filament reorganization. J Biol Chem 280: 3875–3884, 2005

    Article  PubMed  Google Scholar 

  95. Ivanov VN, Hei TK: Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 279: 22747–22758, 2004

    Article  PubMed  Google Scholar 

  96. Wang S, Shi X: Mechanisms of Cr(VI)-induced p53 activation: The role of phosphorylation, mdm2 and ERK. Carcinogenesis 22: 757–762, 2001

    Article  PubMed  Google Scholar 

  97. Ha L, Ceryak S, Patierno SR: Chromium (VI) activates ataxia telangiectasia mutated (ATM) protein. Requirement of ATM for both apoptosis and recovery from terminal growth arrest. J Biol Chem 278: 17885–17894, 2003

    PubMed  Google Scholar 

  98. Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J, Khanna K, Delia D: Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23: 7691–7700, 2004

    Article  PubMed  Google Scholar 

  99. McKinnon PJ: ATM and ataxia telangiectasia. EMBO Rep 5: 772–776, 2004

    Article  PubMed  Google Scholar 

  100. Falck J, Coates J, Jackson SP: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611, 2005

    Article  PubMed  Google Scholar 

  101. Lee JH, Paull TT: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554, 2005

    Article  PubMed  Google Scholar 

  102. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868, 1998

    Article  PubMed  Google Scholar 

  103. Joseph P, Lei YX, Whong WZ, Ong TM: Molecular cloning and functional analysis of a novel cadmium-responsive proto-oncogene. Cancer Res 62: 703–707, 2002

    PubMed  Google Scholar 

  104. Joseph P, Lei YX, Whong WZ, Ong TM: Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene. J Biol Chem 277: 6131–6136, 2002

    Article  PubMed  Google Scholar 

  105. Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L: Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36: 1517–1531, 2004

    Article  PubMed  Google Scholar 

  106. Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Perdrix A: Lung cancer risk in hard-metal workers. Am J Epidemiol 148: 241–248, 1998

    PubMed  Google Scholar 

  107. Fan LZ, Cherian MG: Potential role of p53 on metallothionein induction in human epithelial breast cancer cells. Br J Cancer 87: 1019–1026, 2002

    Article  PubMed  Google Scholar 

  108. Ostrakhovitch EA, Cherian MG: Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys 423: 351–361, 2004

    Article  PubMed  Google Scholar 

  109. Ostrakhovitch EA, Cherian MG: Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10: 111–121, 2005

    Article  PubMed  Google Scholar 

  110. Nickel and Nickel Compounds. IARC Monographs 49: 257–445, 1990

    Google Scholar 

  111. Zhao J, Yan Y, Salnikow K, Kluz T, Costa M: Nickel-induced down-regulation of serpin by hypoxic signaling. Toxicol Appl Pharmacol 194: 60–68, 2004

    Article  PubMed  Google Scholar 

  112. Bal W, Karantza V, Moudrianakis EN, Kasprzak KS: Interaction of Nickel(II) with histones: In vitro binding of nickel(II) to the core histone tetramer. Arch Biochem Biophys 364: 161–166, 1999

    Article  PubMed  Google Scholar 

  113. Bal W, Liang R, Lukszo J, Lee SH, Dizdaroglu M, Kasprzak KS: Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved-off octapeptide. Chem Res Toxicol 13: 616–624, 2000

    Article  PubMed  Google Scholar 

  114. Davidson T, Salnikow K, Costa M: Hypoxia inducible factor-1 alpha-independent suppression of aryl hydrocarbon receptor-regulated genes by nickel. Mol Pharmacol 64: 1485–1493, 2003

    Article  PubMed  Google Scholar 

  115. Miller AC, Blakely WF, Livengood D, Whittaker T, Xu J, Ejnik JW, Hamilton MM, Parlette E, John TS, Gerstenberg HM, Hsu H: Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride. Environ Health Perspect 106: 465–471, 1998

    PubMed  Google Scholar 

  116. Miller AC, Fuciarelli AF, Jackson WE, Ejnik EJ, Emond C, Strocko S, Hogan J, Page N, Pellmar T: Urinary and serum mutagenicity studies with rats implanted with depleted uranium or tantalum pellets. Mutagenesis 13: 643–648, 1998

    PubMed  Google Scholar 

  117. Yazzie M, Gamble SL, Civitello ER, Stearns DM: Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 16: 524–530, 2003

    Article  PubMed  Google Scholar 

  118. Miller AC, Brooks K, Stewart M, Anderson B, Shi L, McClain D, Page N: Genomic instability in human osteoblast cells after exposure to depleted uranium: Delayed lethality and micronuclei formation. J Environ Radioact 64: 247–259, 2003

    Article  PubMed  Google Scholar 

  119. Stearns DM, Wise JP, Sr., Patierno SR, Wetterhahn KE: Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 9: 1643–1648, 1995

    PubMed  Google Scholar 

  120. Bagchi D, Bagchi M, Balmoori J, Ye X, Stohs SJ: Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate. Res Commun Mol Pathol Pharmacol 97: 335–346, 1997

    PubMed  Google Scholar 

  121. Stearns DM, Silveira SM, Wolf KK, Luke AM: Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutat Res 513: 135–142, 2002

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bower, J.J., Leonard, S.S. & Shi, X. Conference overview: Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 279, 3–15 (2005). https://doi.org/10.1007/s11010-005-8210-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8210-7

Key Words

Navigation