Skip to main content
Log in

Detection of single-nucleotide polymorphisms in the p53 gene by LDR/RCA in hydrogel microarrays

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

To find single-nucleotide polymorphisms (SNPs) in the human genome, three modern technologies of molecular genetic analysis were combined: the ligase detection reaction (LDR), rolling circle amplification (RCA), and immobilized microarray of gel elements (IMAGE). SNPs were detected in target DNA by selective ligation of allele-specific nucleotides in microarrays. The ligation product was assayed in microarray gel pads by RCA. Two variants of microarray analysis were compared. One included selective ligation of short oligonu-cleotides immobilized in a microarray with subsequent amplification with a preformed circular probe (a common circle). The probe was especially designed for human genome research. The other variant employed immobilized allele-specific padlock probes, which could be circularized as a result of selective ligation. Codon 72 SNP of the human p53 gene was used as a model. RCA in microarrays proved to be a quantitative assay and, in combination with LDR, allowed efficient discrimination of alleles. The principles and prospects of LDR/RCA in microarrays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Landegren U., Kaiser R., Sanders J., Hood L. 1988. A ligase-mediated gene detection technique. Science. 241, 1077–1080.

    CAS  PubMed  Google Scholar 

  2. Barany F. 1991. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA. 88, 189–193.

    Google Scholar 

  3. Fire A., Xu S.Q. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA. 92, 4641–4645.

    Google Scholar 

  4. Baner J., Nilsson M., Mendel-Hartvig M., Landegren U. 1998. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078.

    Google Scholar 

  5. Lizardi P.M., Huang X., Zhu Z., Bray-Ward P., Thomas D.C., Ward D.C. 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232.

    Google Scholar 

  6. Demidov V.V. 2002. Rolling-circle amplification in DNA diagnostics: The power of simplicity. Expert. Rev. Mol. Diagn. 2, 542–548.

    Google Scholar 

  7. Faruqi A.F., Hosono S., Driscoll M.D., Dean F.B., Alsmadi O., Bandaru R., Kumar G., Grimwade B., Zong Q., Sun Z., Du Y., Kingsmore S., Knott T., Lasken R.S. 2001. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics. 2, 4.

    Google Scholar 

  8. Hafner G.J., Yang I.C., Wolter L.C., Stafford M.R., Giffard P.M. 2001. Isothermal amplification and multimerization of DNA by Bst DNA polymerase. Biotechniques. 30, 852–867.

    Google Scholar 

  9. Nelson J.R., Cai Y.C., Giesler T.L., Farchaus J.W., Sundaram S.T., Ortiz-Rivera M., Hosta L.P., Hewitt P.L., Mamone J.A., Palaniappan C., Fuller C.W. 2002. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques. 32(Suppl.), S44–S47.

    Google Scholar 

  10. Andras S.C., Power J.B., Cocking E.C., Davey M.R. 2001. Strategies for signal amplification in nucleic acid detection. Mol. Biotechnol. 19, 29–44.

    Google Scholar 

  11. Schweitzer B., Kingsmore S. 2001. Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12, 21–27.

    Google Scholar 

  12. Zhang D.Y., Brandwein M., Hsuih T.C., Li H. 1998. Amplification of target-specific, ligation-dependent circular probe. Gene. 211, 277–285.

    Google Scholar 

  13. Hatch A., Sano T., Misasi J., Smith C.L. 1999. Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet. Anal. Biomolec. Engineering. 15, 35–40.

    Google Scholar 

  14. Alsmadi O.A., Bornarth C.J., Song W., Wisniewski M., Du J., Brockman J.P., Faruqi A.F., Hosono S., Sun Z., Du Y., Wu X., Egholm M., Abarzua P., Lasken R.S., Driscoll M.D. 2003. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay. BMC Genomics. 4, 21.

    Google Scholar 

  15. Ladner D.P., Leamon J.H., Hamann S., Tarafa G., Strugnell T., Dillon D., Lizardi P., Costa J. 2001. Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays. Lab. Invest. 81, 1079–1086.

    Google Scholar 

  16. Zhong X.B., Lizardi P.M., Huang X.H., Bray-Ward P.L., Ward D.C. 2001. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl. Acad. Sci. USA. 98, 3940–3945.

    Google Scholar 

  17. Nallur G., Luo C., Fang L., Cooley S., Dave V., Lambert J., Kukanskis K., Kingsmore S., Lasken R., Schweitzer B. 2001. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res. 29, E118.

    Google Scholar 

  18. Favis R., Barany F. 2000. Mutation detection in K-ras, BRCA1, BRCA2, and p53 using PCR/LDR and a universal DNA microarray. Ann. NY. Acad. Sci. 906, 39–43.

    Google Scholar 

  19. Mikhailovich V., Lapa S., Gryadunov D., Sobolev A., Strizhkov B., Chernyh N., Skotnikova O., Irtuganova O., Moroz A., Litvinov V., Vladimirskii M., Perelman M., Chernousova L., Erokhin V., Zasedatelev A., Mirzabekov A. 2001. Identification of rifampicin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J. Clin. Microbiol. 39, 2531–2540.

    Google Scholar 

  20. Rubina A.Y., Dementieva E.I., Stomakhin A.A., Darii E.L., Pan’kov S.V., Barsky V.E., Ivanov S.M., Konovalova E.V., Mirzabekov A.D. 2003. Hydrogel-based protein microchips: Manufacturing, properties, and applications. Biotechniques. 34, 1008–1014, 1016-1020, 1022.

    Google Scholar 

  21. Rubina A.Y., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. 2004. Hydrogel drop microchips with immobilized DNA: Properties and methods for large-scale production. Anal. Biochem. 325, 92–106.

    Google Scholar 

  22. Tillib S.V., Strizhkov B.N., Mirzabekov A.D. 2001. Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Anal. Biochem. 292, 155–160.

    Google Scholar 

  23. Buchman V.L., Chumakov P.M., Ninkina N.N., Samarina O.P., Georgiev G.P. 1988. A variation in the structure of the protein-coding region of the human p53 gene. Gene. 70, 245–252.

    Article  CAS  PubMed  Google Scholar 

  24. Buyru N., Tigli H., Dalay N. 2003. p53 codon 72 polymorphism in breast cancer. Oncol. Rep. 10, 711–714.

    Google Scholar 

  25. Kuroda Y., Tsukino H., Nakao H., Imai H., Katoh T. 2003. p53 codon 72 polymorphism and urothelial cancer risk. Cancer Lett. 189, 77–83.

    Google Scholar 

  26. Suzuki K., Matsui H., Ohtake N., Nakata S., Takei T., Nakazato H., Okugi H., Koike H., Ono Y., Ito K., Kurokawa K., Yamanaka H. 2003. A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. J. Biomed. Sci. 10, 430–435.

    Google Scholar 

  27. Bergamaschi D., Gasco M., Hiller L., Sullivan A., Syed N., Trigiante G., Yulug I., Merlano M., Numico G., Comino A., Attard M., Reelfs O., Gusterson B., Bell A.K., Heath V., Tavassoli M., Farrell P.J., Smith P., Lu X., Crook T. 2003. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell. 3, 387–402.

    Google Scholar 

  28. Gemignani F., Moreno V., Landi S., Moullan N., Chabrier A., Gutierrez-Enriquez S., Hall J., Guino E., Peinado M.A., Capella G., Canzian F. 2004. A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene. 23, 1954–1956.

    Google Scholar 

  29. Granja F., Morari J., Morari E.C., Correa L.A., Assumpcao L.V., Ward L.S. 2004. Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett. 210, 151–157.

    Google Scholar 

  30. Jee S.H., Won S.Y., Yun J.E., Lee J.E., Park J.S., Ji S.S. 2004. Polymorphism p53 codon-72 and invasive cervical cancer: A meta-analysis. Int. J. Gynaecol. Obstet. 85, 301–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 30–39.

Original Russian Text Copyright © 2005 by Kashkin, Strizhkov, Gryadunov, Surzhikov, Grechishnikova, Kreindlin, Chupeeva, Evseev, Turygin, Mirzabekov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashkin, K.N., Strizhkov, B.N., Gryadunov, D.A. et al. Detection of single-nucleotide polymorphisms in the p53 gene by LDR/RCA in hydrogel microarrays. Mol Biol 39, 26–34 (2005). https://doi.org/10.1007/s11008-005-0004-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0004-1

Key words

Navigation