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On the adiabatic limit of Hadamard states

Nicolò Drago & Christian Gérard

Abstract. We consider the adiabatic limit of Hadamard states for free quan-
tum Klein-Gordon fields, when the background metric and the field mass are
slowly varied from their initial to final values. If the Klein-Gordon field stays
massive, we prove that the adiabatic limit of the initial vacuum state is the
(final) vacuum state, by extending to the symplectic framework the adiabatic
theorem of Avron -Seiler-Yaffe.

In cases when only the field mass is varied, using an abstract version of the
mode decomposition method we can also consider the case when the initial or
final mass vanishes, and the initial state is either a thermal state or a more
general Hadamard state.

1. Introduction

In this paper we study the adiabatic limit of Hadamard states for free quantum
Klein-Gordon fields. Hadamard states play nowadays a crucial role in the algebraic
approach to Quantum Field Theory on curved spacetimes. They are suitable linear
positive and normalized functionals on the ∗-algebra of observables [KM], which
enjoy further microlocal properties [R1, R2]. They play an important role in al-
gebraic Quantum Field Theory for several reasons, [GK, W, FV, HW], ultimately
linked to the fact that the Hadamard condition is the correct criterion to single out
physically relevant states. Nowadays the literature on Hadamard states is wide,
ranging from existence results [FNW1, FNW2] to explicit constructing techniques
[BDM, DD, DMP, FMR, GW1, GW2, WZ].

In this paper we describe another construction of Hadamard states via a defor-
mation procedure in parameter space. This deformation procedure is obtained by
considering an “intermediate” theory with a smoothly deformed parameter, which
interpolates between the two values of interest (eg between two values of the mass).
States for this latter theory can be thought as smooth deformations of states from
one theory to the other. Actually, it is only in the final step that one really recov-
ers a state for the theory of interest: This step consists in a limit procedure, the
so-called adiabatic limit.

In the first part of the paper we consider massive Klein-Gordon field with an
external electromagnetic potential in a globally hyperbolic spacetime. The metric,
electromagnetic potential and the field mass are smoothly deformed from their
initial to final values. We show in Thm. 3.4 that the adiabatic limit of the initial
vacuum state is again the final vacuum state. For this we generalize the well
known results of [ASY] on the adiabatic limit for a symplectic, rather than unitary,
dynamics.

The previous analysis leaves out the massless case, which is typically affected by
infrared divergences. The treatment of this case is the content of the second part
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of the paper, which specializes the model previously described to the case where
only the field mass is varied. The Klein-Gordon equation is then separable and one
can restrict attention to quasi-free states whose covariances are diagonal w.r.t. the
spatial Laplacian. The construction of such states is known in the physics literature
as the mode decomposition method. Some aspects of this analysis already appear,
in a different formulation and in special cases, in [DD, DHP].

The main result proved in Prop. 5.2 is that the adiabatic limit for the mass
parameter can be performed for a large class of such states, containing in particular
vacuum states and thermal states. As a particular case we prove that the KMS
property, which characterizes states in thermal equilibrium (see [S]), is not preserved
by the adiabatic limit.

The paper is structured as follows: Sections 2-3 are devoted to recollect some
well-known material and to formulate precisely the problem of the adiabatic limit
for the model of interest. Section 4 deals with the adiabatic Theorem for symplectic
dynamics (Thm.4.4) which generalizes the result of [ASY] to the symplectic case.
Finally Section 5 deals with the massless to massive transition, analyzing in par-
ticular the Hadamard property of the adiabatic limit as well as the adiabatic limit
of vacuum and KMS states.

1.1. Notation. - we set 〈x〉 = (1 + x2)
1
2 for x ∈ Rn.

- the domain of a closed, densely defined operator a will be denoted by Dom a
and equipped with the graph norm, its resolvent set by ρ(a).

- if a is a selfadjoint operator on a Hilbert space H, we write a > 0 if a ≥ 0 and
Ker a = {0}. We set S = {u ∈ H : u = 1[δ,R](a)u, δ, R > 0}. For s ∈ R we denote

by 〈a〉sH the completion of S for the norm ‖u‖−s = ‖〈a〉−su‖. Similarly if a > 0
we denote by asH the completion of S for the norm ‖u‖ = ‖a−su‖.

- functions of a will be denoted by f(a), in particular if ∆ ⊂ R is a Borel set,
1∆(a) denotes the spectral projection on ∆ for a.

- if R ∋ t 7→ b(t) is a map with values in closed densely defined operators on
H, satisfying the conditions of Kato’s theorem, see [RS, Thm. X.70] or [SG] for a
recent exposition, the strongly continuous two parameter group with generator b(t)

will be denoted by Texp(i
´ t

s
b(σ)dσ).

- the operator of multiplication by a function f will be denoted by f , while the
operators of partial differentiation will be denoted by ∂i, so that [∂i, f ] = ∂if .

2. Free quantized Klein-Gordon fields

We now briefly recall some background material on free quantized Klein-Gordon
fields, referring for example to [BGP, KM] for details. We adopt the framework of
charged fields, corresponding to complex solutions of the Klein-Gordon equation,
which we find more convenient. We refer the reader to [GW1, Sect. 1] for details.

2.1. Charged bosonic fields. In this framework the phase space, used to con-
struct the CCR algebra, is a pseudo-unitary space (Y , q), ie Y is a complex vector
space and q ∈ Lh(Y ,Y∗) a non-degenerate hermitian form, instead of a real sym-
plectic space (X , σ) as usual. Let hence Y a complex vector space, Y∗ its anti-dual.
Sesquilinear forms on Y are identified with elements of L(Y ,Y∗) and the action of
a sesquilinear form β is correspondingly denoted by y1 ·βy2 for y1, y2 ∈ Y . We fix
q ∈ Lh(Y ,Y∗) a non degenerate hermitian form on Y .
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The ∗−algebra CCR(Y , q) is the (complex) ∗−algebra generated by symbols
1, ψ(y), ψ∗(y), y ∈ Y and the relations:

ψ(y1 + λy2) = ψ(y1) + λψ(y2), y1, y2 ∈ Y , λ ∈ C,

ψ∗(y1 + λy2) = ψ∗(y1) + λψ∗(y2), y1, y2 ∈ Y , λ ∈ C,

[ψ(y1), ψ(y2] = [ψ∗(y1), ψ
∗(y2)] = 0, [ψ(y1), ψ

∗(y2)] = y1 ·qy21, y1, y2 ∈ Y ,

ψ(y)∗ = ψ∗(y), y ∈ Y .

A state ω on CCR(Y , q) is (gauge invariant) quasi-free if

ω(

p
∏

i=1

ψ(yi)

q
∏

i=1

ψ∗(yj)) =

{

0 if p 6= q,
∑

σ∈Sp

∏p
i=1 ω(ψ(yi)ψ

∗(yσ(i))) if p = q.

There is no loss of generality to restrict oneself to charged fields and gauge invariant
states, see eg the discussion in [GW1, Sect. 2]. It is convenient to associate to ω
its (complex) covariances λ± ∈ Lh(Y ,Y∗) defined by:

ω(ψ(y1)ψ
∗(y2)) =·· y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2,
y1, y2 ∈ Y .

It is well-known that two hermitian forms λ± ∈ Lh(Y ,Y∗) are the covariances of a
quasi-free state ω iff

(2.1) λ± ≥ 0, λ+ − λ− = q.

2.2. Free quantized Klein-Gordon fields. Let (M, g) be a globally hyperbolic
spacetime, Aa(x)dx

a a smooth 1−form on M and m ∈ C∞
c (M ;R) a smooth real

function. We set

(2.2) P = −(∇a − iAa(x))(∇a − iAa(x)) +m(x)

the associated Klein-Gordon operator. Let G± be the advanced/retarded inverses
of P and G ··= G+ −G− the causal propagator. Denote by Solsc(KG) the space of
smooth, complex, space-compact solutions of the Klein-Gordon equation Pφ = 0.

We equip Solsc(KG) with the hermitian form

φ·qφ ··= i

ˆ

Σ

(

(∂a − iAa)φφ− φ(∂a − iAa)φ
)

nadsΣ

where Σ is a spacelike Cauchy hypersurface, na is the future directed normal to Σ
and dsΣ the induced density on Σ. The above expression is independent on the
choice of Σ and (Solsc(KG), q) is a pseudo-unitary space, i.e. q is non degenerate.

It is well-known that the sequence

0 −→ C∞
c (M)

P
−→C∞

c (M)
G
−→ Solsc(KG)

P
−→ 0

is exact and

Gu·qGu = i−1(u|Gu)M =·· [u]·Q[u], [u] ∈
C∞

c (M)

PC∞
c (M)

,

where (u|v)M =
´

M
uvdV olg. It follows that

(
C∞

c (M)

PC∞
c (M)

, Q)
G
−→(Solsc(KG), q)

is an isomorphism of pseudo-unitary spaces. Fixing a space-like Cauchy hypersur-
face Σ and setting

ρ : C∞
sc (M) ∋ φ 7→ ρφ =

(

φ↾Σ
na(i−1∂aφ−Aaφ)↾Σ

)

= f ∈ C∞
c (Σ)⊗ C

2,



On the adiabatic limit of Hadamard states 4

we obtain, since the Cauchy problem
{

Pφ = 0,
ρu = f

for f ∈ C∞
c (Σ)⊗ C2 that

(Solsc(KG), q)
ρ

−→(C∞
c (Σ)⊕ C∞

c (Σ), q)

is pseudo-unitary, where

(2.3) f ·qf =

ˆ

Σ

f1f0 + f0f1dsΣ, f =

(

f0
f1

)

.

2.3. Quasi-free states. One restricts attention to quasi-free states on CCR(Y , q)
whose covariances are given by distributions on M ×M , ie such that there exists
Λ± ∈ D ′(M ×M) with

(2.4)
ω(ψ([u1])ψ

∗([u2])) = (u1|Λ
+u2)M ,

ω(ψ∗([u2])ψ([u1])) = (u1|Λ
−u2)M ,

u1, u2 ∈ C∞
c (M).

In the sequel the distributions Λ± ∈ D ′(M × M) will be called the spacetime
covariances of the state ω.

In (2.4) we identify distributions on M with distributional densities using the
density dV olg and use hence the notation (u|ϕ)M , u ∈ C∞

c (M), ϕ ∈ D ′(M) for the
duality bracket. We have then

P (x, ∂x)Λ
±(x, x′) = P (x′, ∂x′)Λ±(x, x′) = 0,

Λ+(x, x′)− Λ−(x, x′) = i−1G(x, x′).

Since

(
C∞

c (M)

PC∞
c (M)

, Q)
ρ◦G
−→ (C∞

c (Σ)⊗ C
2, q)

is an isomorphism of pseudo-unitary spaces, it follows that a quasi-free state with
space-time covariances Λ± is uniquely defined by its Cauchy surface covariances
λ±Σ defined by:

(2.5) Λ± =·· (ρE)∗λ±Σ(ρE).

Using the canonical scalar product (f |f)Σ ··=
´

Σ
f1f1 + f0f0dσΣ we identify λ±Σ

with operators, still denoted by λ±Σ , belonging to L(C∞
c (Σ)⊗ C2,D ′(Σ)⊗ C2).

A pair λ±Σ of hermitian forms on C∞
c (Σ) ⊗ C2 is the pair of Cauchy surface

covariances of a quasi-free state iff

(2.6) λ±Σ ≥ 0, λ+Σ − λ−Σ = q,

where the charge q is defined in (2.3).

3. Adiabatic limits of quasi-free states

In this section we formulate the problem that we will consider in this paper,
namely the existence of adiabatic limits for quasi-free states. The formulation
relies on a 1 + d decomposition, ie on fixing some time coordinate.

We also state Thm. 3.4 about the adiabatic limits of vacuum states.
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3.1. 1 + d decompositions. We consider simple model spacetimes M = R × Σ
equipped with the Lorentzian metric

g = −dt2 + hij(t, x)dx
idxj ,

where Σ is a smooth manifold and hij(t, x)dx
idxj is a smooth, time-dependent

family of complete Riemannian metrics on Σ. We also fix a smooth 1−form A =
V (t, x)dt + Ai(t, x)dx

i and a real function m ∈ C∞
c (M). We denote by P̃ the

associated Klein-Gordon operator as (2.2):

(3.1) P̃ = (∂t − iV (t))2 + r(t)(∂t − iV (t)) + a(t, x, ∂x),

where V (t), r(t) are the operators of multiplication by V (t, x), |ht|
− 1

2 ∂t|ht|
1
2 (x) and

ã(t, x, ∂x)

= −|ht|
− 1

2 (x)(∂j − iAj(t, x))|ht|
1
2 (x)ht(x)

jk(∂k − iAk(t, x)) +m(t, x),

is formally selfadjoint on Ht = L2(Σ, |ht|dx).

It is convenient to equip Σ with the time-independent density |h0|
1
2 dx and to set

c2(t, x) := |ht|
− 1

2 |h0|
1
2 (x).

Using the unitary transformation

U : L2(M, |h0|
1
2 dxdt) ∋ φ 7→ ψ = cφ ∈ L2(M, |ht|

1
2 dxdt)

for c2 = |ht|
− 1

2 |h0|
1
2 , we transform P̃ into P = UP̃U−1 = c−1P̃ c.

Using that (∂t − iV )c = c(∂t − iV ) + ∂tc and r = −2c−1∂tc, we obtain after an
easy computation that:

(3.2) P = (∂t − iV )2 + a(t, x, ∂x),

a(t, x, ∂x) = a(t) = c−1ã(t, x, ∂x)c+ c−1∂2t c− 2(c−1∂tc)
2,

which is formally selfadjoint on H = L2(Σ, |h0|
1
2 dx). The conserved charge for the

solutions of Pφ = 0 is:

φqφ ··=

ˆ

Σ

(

(i−1∂tφ(t)− V (t)φ(t))φ(t) + φ(t)(i−1∂tφ(t) − V (t)φ(t))
)

|h0|
1
2 dx.

The corresponding identities for causal propagators and spacetime two-point func-
tions of a quasi-free state are:

G = c−1G̃c, Λ± = c−1Λ̃±c,

and in the sequel we will consider quantized Klein-Gordon fields for P , instead of
the original operator P̃ , since both are equivalent.

3.2. Assumptions. We will assume that for any interval I ⋐ R there exist con-
stants CI,n > 0, n ∈ N such that for t ∈ I, x ∈ Σ:

(Hi) C−1
I,0h0(x) ≤ ht(x) ≤ CI,0h0(x),

(Hii) |∂nt ht(x)| ≤ CI,nh0(x),

(Hiii) |∂nt V (t, x)|+ |∂nt Ai(t, x)h
ij
0 (x)∂

n
t Aj(t, x)|+ |∂nt m(t, x)| ≤ CI,n,

(Hiv) ∂iAi(t, x)h
ij
0 (x)∂jAj(t, x) ≤ CI,0.

Let us set

a0 = a0(x, ∂x) = −|h0|
− 1

2 ∂j |h0|
1
2hjk0 ∂k,

which by Chernoff’s theorem [C] (recall that ht(x)dx
2 is assumed to be complete), is

essentially selfadjoint on C∞
c (Σ). We setH1(Σ) := Dom a

1
2

0 andH−1(Σ) := H1(Σ)∗
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its anti-dual. We have continuous and dense embeddings H1(Σ) →֒ L2(Σ) →֒
H−1(Σ).

Similarly a(t) is essentially selfadjoint on C∞
c (Σ) and using (H) we easily see

that H1(Σ) = Dom |a(t)|
1
2 .

We will need later stronger conditions than (H). Setting f (k) = ∂kt f , we require
that for k = 1, 2:

(Di) a(k)(t)a−1(t) is bounded on H locally uniformly in t,

(Dii) a(t)
1
2 a(k)(t)a(t)−3/2 is bounded on H locally uniformly in t,

(Diii) a(t)−
1
2 [a(k)(t), a(t)]a(t)−1 is bounded on H locally uniformly in t.

These conditions will be used in Lemma 4.1 to estimate time derivatives of a(t)
1
2 .

They are a substitute for the lack of knowledge of Dom a(t) in our abstract setting.

Remark 3.1. A convenient setup where conditions (D) are satisfied is the fol-
lowing: we assume that (Σ, h0) is of bounded geometry, see [CG, Ro] or [GOW]
for a self contained exposition. One can then define the spaces BTp

q(Σ, h0) of

smooth bounded (q, p) tensors. If we assume that h ∈ C∞(R; BT0
2(Σ, h0)), h

−1 ∈
C∞(R; BT2

0(Σ, h0)), V,m ∈ C∞(R; BT0
0(Σ, h0)), A ∈ C∞(R,BT0

1(Σ, h0)), then
these assumptions are satisfied. We refer the interested reader to [GOW, Sects.
2, 5] for details.

3.3. Cauchy evolution. Denoting by

ρsφ(x) =

(

φ(s, x)
i−1∂tφ(s, x)− V (s, x)φ(s, x)

)

, s ∈ I,

the trace operator on Σs = {s} × Σ, we know that the Cauchy problem

(3.3)

{

Pφ = 0,
ρsφ = f ∈ C∞

c (Σ)⊗ C2

is globally well posed. If φ = Usf for f ∈ C∞
c (Σ) ⊗ C2 is the solution of (3.3), we

denote by U(t, s)f = ρtUsf the Cauchy evolution for (3.3).
If ω is a quasi-free state for P , the Cauchy surface covariances of ω for the Cauchy

surface Σs will be denoted by λ±s . Clearly we have

λ±t = U(s, t)∗λ±s U(s, t).

3.4. Energy spaces. Let I ⋐ R a compact interval. Let us introduce the following
positivity condition:

(P ) a(t, x, ∂x)− V 2(t, x) ≥ CI1 on H for t ∈ I.

In practice (P ) is satisfied if we choose m(t, x) = m2 large enough. If (P ) holds we
introduce the energy norm:

(3.4) Et(f, f) := (f1 + V (t)f0|f1 + V (t)f0) + (f0|p(t)f0),

where p(t) = a(t)−V 2(t) and (u|v) denotes the scalar product in H = L2(Σ, |h0|
1
2 dx).

By (P ) Et(·, ·) is positive definite and using (H) and (P ) we see that the norm

Et(f, f)
1
2 is equivalent to ‖f0‖H1(Σ) + ‖f1‖L2(Σ), uniformly for t ∈ I.

Definition 3.2. The space H1(Σ)⊕L2(Σ) with norm ‖f0‖H1(Σ)⊕‖f1‖L2(Σ), resp.

Et(f, f)
1
2 will be denoted by E , resp. Et.

The norms ‖f‖E and ‖f‖Et are uniformly equivalent for t ∈ I, using (H), and
C∞

c (Σ)⊗ C2 is dense in E = Et.
We will prove later on in Sect. 4 the following proposition.
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Proposition 3.3. The two parameter group {U(t, s)}t,s∈I acting on C∞
c (Σ)⊗ C2

extends uniquely to a strongly continuous two parameter group {U(t, s)}t,s∈I such
that U(t, s) : Es → Et is unitary and I2 ∋ (t, s) 7→ U(t, s) is strongly continuous
(for the common topology of all the Et).

Denoting by H(t) its infinitesimal generator we have:

i) DomH(t) = Dom a(t)⊕H1(Σ),

ii) H(t) is selfadjoint on Et and 0 ∈ ρ(H(t)).

3.5. Vacuum states. If Q(t, ∂t, x, ∂x) is a differential operator and t0 ∈ I we
denote

(3.5) Qt0 = Q(t0, ∂t, x, ∂x)

the operator Q with coefficients frozen at t = t0. In particular Pt0 = P (t0, ∂t, x, ∂x)
is the Klein-Gordon operator P with coefficients frozen at t = t0. The associated
Cauchy evolution is ei(t−s)H(t0). Since Pt0 is invariant under time translations, and
because of condition (P ), the quantized Klein-Gordon field for Pt0 admits a vacuum

state ωvac
t0 . Its covariances λ±,vac

t0 are given by:

(3.6) λ±,vac
t0 = ±q ◦ 1R±(H(t0)),

where 1R±(H(t0)) are the spectral projections on R± for H(t0), which are well
defined by Prop. 3.3.

3.6. Adiabatic limits. We fix a compact interval I ⋐ R (for definiteness I =
[−1, 1]) and consider for T ≫ 1 the Klein-Gordon operator

(3.7) PT (t, ∂t, x, ∂x) ··= P (T−1t, ∂t, x, ∂x),

ie hij(T
−1t, x)dxidxj , Ai(T

−1t, x)dxi, V (T−1t, x) and m(T−1t, x) are slowly varied
from t = −T to t = T . Recalling the notation in (3.5) we have

PT
±T = P±1.

The associated Cauchy evolution UT (t, s) has generator H(T−1t).
If λ±−1 are the covariances at time t = −1 of a state ω for the time-independent

Klein-Gordon operator P−1, we can investigate the existence of the adiabatic limit

(3.8) λad1 =·· w− lim
T→+∞

UT (−T, T )
∗λ±−1UT (−T, T ) on C∞

c (Σ)⊗ C
2.

If the limits (3.8) exist, then they are the time t = 1 covariances of a quasi-free
state ωad for the time-independent Klein-Gordon operator P1.

We now state the main result of this paper.

Theorem 3.4. Let λ±,vac
−1 be the Cauchy surface covariances of the vacuum state

for the time-independent Klein-Gordon operator P−1. Then the adiabatic limits

w− lim
T→+∞

UT (−T, T )
∗λ±,vac

−1 UT (−T, T ) exist on C∞
c (Σ)⊗ C

2

and are the Cauchy surface covariances λ±,vac
1 of the vacuum state for the time-

independent Klein-Gordon operator P1.

The proof, which follows directly from the adiabatic theorem Thm. 4.4, is given
in Subsect. 4.4.
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4. An adiabatic theorem for symplectic dynamics

In this section we prove a version of the adiabatic theorem of [ASY] for a sym-
plectic (instead of a unitary) dynamics. We will use the setup of Subsects. 3.1,
3.2 although it is likely that the adiabatic theorem proved in Thm. 4.4 extends
to a more general framework. A natural situation would be a two parameter (lin-
ear) symplectic flow generated by a time-dependent quadratic Hamiltonian which
is positive definite, corresponding to our condition (P ). Of course this positivity
condition has to be supplemented by abstract versions of (H), (D), implying for
example that the energy norms are locally uniformly equivalent to some reference
Hilbert norm. We assume hence hypotheses (H), (P ), (D). We start by proving
Prop. 3.3.

4.1. Proof of Prop. 3.3. On C∞
c (Σ)⊗ C2 we have:

∂tU(t, s) = iH(t)U(t, s), ∂sU(t, s) = −iU(t, s)H(s),

for

(4.1) H(t) =

(

V (t) 1

a(t) V (t)

)

.

It is convenient to set:

ρ̂sφ(x) =

(

φ(s, x)
i−1∂tφ(s, x)

)

=: g

so that ρ̂sφ = S(s)ρsφ, S(s) =

(

1 0
V (s) 1

)

. The associated evolution is

(4.2) W (t, s) = S(t)U(t, s)S−1(s),

with generator
K(t) = S(t)H(t)S−1(t)− i∂tS(t)S

−1(t)

=

(

0 1

p(t)− i∂tV (t) 2V (t)

)

,

where we recall that p(t) = a(t)− V 2(t). We set

Ft(g, g) = (g1|g1) + (g0|p(t)g0).

Again the completion of C∞
c (Σ) ⊗ C

2 for F
1
2

t equals Et. We obtain that if g(t) =
W (t, s)g, g ∈ C∞

c (Σ)⊗ C2:

(4.3)
∂tFt(g(t), g(t)) = (g1(t)|∂tV (t)g0(t))

+ (g0(t)|∂tV (t)g1(t)) + (g0(t)|∂tp(t)g0(t)).

Using (H) and (P ) we obtain that for t ∈ I one has:

|(g0(t)|∂tp(t)g0(t))| ≤ CIFt(gt, gt),

which using also (H) for the other terms in the rhs of (4.3) yields

|∂tFt(gt, gt)| ≤ CIFt(gt, gt), t ∈ I.

By Gronwall’s inequality this implies that for any I ⋐ R we have:

sup
t,s∈I

‖W (t, s)‖B(Et) ≤ CI .

Since W (t, s) is strongly continuous on the dense subspace C∞
c (Σ)⊗C2 it is strongly

continuous on Et. By (4.2) the same is true for U(t, s).
The operator K(t) preserves C∞

c (Σ) ⊗ C2 and is bounded from Et to E∗
t =

L2(Σ)⊕H−1(Σ). Its domain as the infinitesimal generator of W (t, s) is

DomK(t) = {g ∈ Et : K(t)g ∈ Et} = Dom a(t)⊕H1(Σ),
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by direct inspection, using that Dom a(t) = {u ∈ H1(Σ) : a(t)u ∈ L2(Σ)}.
Note that using (Hiv) we obtain that V (t) : H1(Σ) → H1(Σ) hence S(t) is an

isomorphism of both Et and of Dom a(t) ⊕ H1(Σ). Therefore the domain of H(t)
as infinitesimal generator of U(t, s) equals S(t)−1 DomK(t) = Dom a(t)⊕H1(Σ).

We now study the operator H(t). Let us set

L(t) = S(t)H(t)S(t)−1 =

(

0 1

p(t) 2V (t)

)

.

From (P ) we know that 0 ∈ ρ(p(t)) hence 0 ∈ ρ(L(t)) by [GGH, Prop. 5.3]. Using
then [GGH, Thm. 5.4] we obtain that L(t) is selfadjoint on Et. This implies that
H(t) is selfadjoint on Et with 0 ∈ ρ(H(t)). ✷

4.2. Smoothness of spectral projections. Since by Prop. 3.3 H(t) is selfadjoint
on Et we can define the spectral projection

P (t) = 1R+(H(t)) ∈ B(Et).

Moreover since 0 ∈ ρ(H(t)), for each I ⋐ R there exist χ ∈ C∞(R), χ ≡ 1 near +∞
such that P (t) = χ(H(t)) for t ∈ I. In this subsection we examine the smoothness
of P (t) w.r.t. t.

4.2.1. Almost analytic extensions and functional calculus. Let us set

Sρ(R) = {f ∈ C∞(R) : ∂nλf(λ) ∈ O(〈λ〉ρ−n), n ∈ N}, ρ ∈ R.

We equip Sρ(R) with the semi-norms ‖f‖ρ,n = supλ∈R |〈λ〉ρ−n∂nλf(λ)|.

For f ∈ Sρ(R) we denote by f̃ ∈ C∞(C) an almost analytic extension of f
satisfying:

(4.4)

i) f̃↾R= f,

ii) suppf̃ ⊂ {|Imz| ≤ C|Rez|},

iii) |∂z f̃(z)| ∈ O(〈z〉)ρ−1−k|Imz|k, ∀k ∈ N,

see for example [DG1, Prop. C.2.2] for a construction of f̃ . If H is selfadjoint on a
Hilbert space H we have the bounds:

(4.5)
i) ‖(H − z)−1‖ ≤ |Imz|−1,

ii) ‖(H + i)(H − z)−1‖ ≤ c〈z〉|Imz|−1 for |Imz| ≤ C|Rez|.

and f ∈ Sρ(R), for ρ < 0, then one has

(4.6) f(H) =
1

2iπ

ˆ

C

∂z f̃(z)(z −H)−1dz ∧ dz,

the integral being norm convergent, using (4.5) i).
Let us now explain how to extend (4.6) to the case ρ ≥ 0. Let us fix χ ∈ C∞

c (R)
with χ = 1 near 0 and χ̃ ∈ C∞

c (C) an almost analytic extension of χ. We set
χR(x) = χ(R−1x) and χ̃R(z) = χ̃(R−1z), which is an almost analytic extension of
χR.

For f ∈ Sρ(R) and ρ ≥ 0, we set fR(λ) = f(λ)χR(λ). We have:

(4.7)
{fR}R≥1 is bounded in Sρ(R),

Rρ′−ρ{(fR − f)}R≥1 is bounded in Sρ′

(R), ∀ρ′ > ρ.
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Let us set f̃R = f̃ χ̃R, which is an almost analytic extension of fR. The following
properties of f̃R follow from (4.7) and the construction of f̃ , χ̃ in [DG1]:

(4.8)

i) f̃R↾R= fR,

ii) suppf̃R ⊂ {|Imz| ≤ C|Rez|} ∩ {|z| ≤ CR},

iii) |∂z f̃R(z)| ∈ O(〈z〉)ρ−1−k|Imz|k, ∀k ∈ N, uniformly for R ≥ 1,

iv) |∂z(f̃(z)− f̃R(z))| ∈ O(〈z〉)ρ
′−1−kRρ−ρ′

|Imz|k, ∀k ∈ N, ρ′ > ρ.

Since f(H) = s− limR→+∞ fR(H) in B(Dom |H |ρ,H) we have:

(4.9) f(H) = s− lim
R→+∞

1

2iπ

ˆ

C

∂z(f̃R)(z)(z −H)−1dz ∧ dz, in B(Dom |H |ρ,H).

Lemma 4.1. Assume (H), (P ) and (D). Let ǫ(t) = a(t)
1
2 . Then for k = 1, 2:

i) ǫ(t)(ǫ−1)(k)(t) is bounded on H, locally uniformly in t,

ii) ǫ−1(t)ǫ(k)(t) is bounded on H, locally uniformly in t.

Proof. Note that by duality and interpolation (Di) implies that ǫ−1(t)a′(t)ǫ−1(t)
is bounded on H locally uniformly in t. Let us first prove i). We have ǫ−1(t) =

π−1
´ +∞

0 λ−
1
2 (a(t) + λ)−1dλ, hence:

ǫ(t)(ǫ−1)′(t) = −π−1
´ +∞

0
λ−

1
2 a(t)

1
2 (a(t) + λ)−1a′(t)(a(t) + λ)−1dλ

= −π−1
´ +∞

0 λ−
1
2 a(t)

1
2 a′(t)(a(t) + λ)−2dλ

+π−1
´ +∞

0
λ−

1
2 a(t)

1
2 (a(t) + λ)−1[a(t), a′(t)](a(t) + λ)−2dλ.

The first term equals a(t)
1
2 a′(t)a(t)−3/2 which is bounded by (Dii). We write the

second term as

π−1

ˆ +∞

0

λ−
1
2 a(t)(a(t) + λ)−1a(t)−

1
2 [a(t), a′(t)]a(t)−1(a(t) + λ)−2a(t)dλ.

The integral is norm convergent using (Diii) since a(t)(a(t) +λ)−1 ∈ O(1). There-
fore ǫ(t)(ǫ−1)′(t) is bounded on L2(Σ) which proves i). To prove ii) we write
ǫ(t) = ǫ−1(t)a(t) hence

ǫ′(t)ǫ−1(t) = ǫ−1(t)a′(t)ǫ−1(t) + (ǫ−1)′(t)a(t)ǫ−1(t)

which is bounded on L2(Σ) by i) and (Di). Using the same argument we prove the
estimates for second derivatives. ✷

Proposition 4.2. Assume (H), (P ) and (D). Let P (t) := 1R+(H(t)). Then
R ∋ t 7→ P (t) ∈ B(Et) is strongly C2 and P (k)(t) is bounded on Et locally uniformly
in t for k = 1, 2.

Proof. In the sequel we write A(t) ∈ O(1) if ‖A(t)‖B(Et) ∈ O(1) for t ∈ I.

We set H0(t) =

(

0 1

a(t) 0

)

, W (t) := H(t) − H0(t) ∈ O(1), using (Hiii)). Since

0 ∈ ρ(H(0)(t)) we have 1R+(H(0)(t)) = f(H(0)(t)), for t ∈ I, for some f ∈ S0(R),
f = 1 near +∞, f = 0 near −∞. We have by (4.9):

f(H(t)) = f(H0(t)) +R(t),

for

R(t) = s− lim
R→+∞

1

2iπ

ˆ

C

∂z f̃R(z)(z −H(t))−1W (t)(z −H0(t))
−1dz ∧ dz, in Et.
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Using (4.8) iv) we then obtain

R(t) =
1

2iπ

ˆ

C

∂z f̃(z)(z −H(t))−1W (t)(z −H0(t))
−1dz ∧ dz,

the integral being norm convergent on B(Et).

We have by an easy computation f(H0(t)) = 1R+(H0(t)) = 1
2

(

1 ǫ(t)−1

ǫ(t) 1

)

,

which using Lemma 4.1 implies that f(H0(t))
′ is uniformly bounded on Et for t ∈ I.

Next we compute:

R′(t) = i
2π

´

C
∂z f̃(z)(z −H(t))−1W ′(t)(z −H0(t))

−1dz ∧ dz

+ i
2π

´

C
∂z f̃(z)(z −H(t))−1H ′(t)(z −H(t))−1W (t)(z −H0(t))

−1dz ∧ dz

+ i
2π

´

C
∂z f̃(z)(z −H(t))−1W (t)(z −H0(t))

−1H ′
0(t)(z −H0(t))

−1dz ∧ dz.

From (H) we see easily that W ′(t) ∈ O(1) and from (Di) that H ′
0(t)(H0(t) + i)−1,

H ′(t)(H(t)+ i)−1 ∈ O(1). Using also (4.5) we obtain that the integrands in the rhs
above are bounded by either |Imz|−2 or by 〈z〉|Imz|−3, uniformly for t ∈ I. Since

∂z f̃ ∈ O(〈z〉−1−k)|Imz|k we obtain that R′(t) ∈ O(1). We use the same argument
to estimate P ′′(t). ✷

✷

The following lemma is a version of [ASY, Lemma 2.5], where the case when
P (t) is the spectral projection on a bounded interval was considered.

Lemma 4.3. Let I ∋ t 7→ H(t) be a map with values in selfadjoint operators
on a Hilbert space H and I ∋ t 7→ X(t) ∈ B(H) be strongly C1. Assume that
D = DomH(t) is independent on t and that:

H(t) : D → H is strongly differentiable, [−α, α] ⊂ ρ(H(t)) for t ∈ I.

Let P (t) = 1R+(H(t)) and let us fix f ∈ S0(R) such that f(λ) = 1R+(λ) R\[−α, α]

and f̃ an almost analytic extension of f satisfying (4.4). Then the integral

(4.10) X̃(t) ··= −
1

2iπ

ˆ

C

∂z f̃(z)(z −H(t))−1X(t)(z −H(t))−1dz ∧ dz,

is norm convergent in B(H).

The map I ∋ t 7→ X̃(t) ∈ B(H) is strongly C1 and

[P (t), X(t)] = [X̃(t), H(t)], as quadratic forms on D .

Proof. We first fix t ∈ I and omit the parameter t for simplicity of notation. Using
(4.8) we obtain

P = s− lim
R→+∞

1

2iπ

ˆ

C

∂z f̃R(z)(z −H)−1dz ∧ dz, in B(H),

hence:

[P,X ] = s− lim
R→+∞

1

2iπ

ˆ

C

∂f̃R
∂z

(z)[(z −H)−1, X ]dz ∧ dz, in B(H).

We recall that D = DomH(t) is independent on t and denote by D ′ its topological
dual. Since [(z −H)−1, X ] = [H, (z −H)−1X(z −H)−1] on B(D ,D ′), we obtain
(4.11)

[P,X ] = s− lim
R→+∞

1

2iπ

ˆ

C

∂z f̃R(z)[H, (z −H)−1X(z −H)−1]dz ∧ dz in B(D ,D ′).
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Using (4.8) iv) we can compute the strong limit in the rhs of (4.11) and obtain

[P,X ] = [H, X̃] for

X̃ = −
1

2iπ

ˆ

∂z f̃(z)(z −H)−1X(z −H)−1dz ∧ dz.

It remains to check that t 7→ X̃(t) is strongly C1. This follows from differentiating
in t the rhs of (4.10), using d

dt(z −H(t))−1 = (z −H(t))−1H ′(t)(z −H(t))−1. The
details are left to the reader. ✷

4.3. Adiabatic evolution. We recall from Subsect. 3.6 that UT (t, s) is the Cauchy
evolution associated to the Klein-Gordon operator P (T−1t, ∂t, x, ∂x). Repeating

the computations in the proof of Prop. 3.3 we obtain for f(t) = ŨT (t, s)f that

∂tEt(f(t), f(t)) ≤ CT−1Et(f(t), f(t)), t ∈ [−T, T ],

hence by Gronwall’s inequality

‖UT (t, s)f)‖Et ≤ C‖f‖Es, t, s ∈ [−T, T ],

where we recall that the norm ‖ · ‖Et is defined in Def. 3.2.

Et = H1(Σ)⊕ L2(Σ),

equipped with the norm Et(f, f)
1
2 introduced in (3.4). This implies that

‖UT (t, s)‖B(E) ≤ C, t, s ∈ [−T, T ].

We set

ÛT (t, s) = UT (T t, T s), t, s ∈ [−1, 1].

whose generator is TH(t). We obtain that:

(4.12) ‖ÛT (t, s)‖B(E) ≤ C, t, s ∈ [−1, 1], T ≥ 1.

We set

Had
T (t) := H(t) + iT−1[P (t), P ′(t)],

where P (t) = 1R+(H(t)). Since [−1, 1] ∋ t 7→ P (t), P ′(t) ∈ B(Et) are strongly

continuous by Prop. 4.2, the evolution group Ûad
T (t, s) with generator THad

T (t) can
be constructed by setting:

Ûad
T (t, s) =: ÛT (t, 0)ZT (t, s)ÛT (0, s),

where

∂tZT (t, s) = KT (t)ZT (t, s), ZT (s, s) = 1,

KT (t) = ÛT (0, t)[P
′(t), P (t)]ÛT (t, 0) ∈ B(Et).

By a standard argument (see eg [ASY, Lemma 2.3]) one obtains that:

(4.13) P (t)Ûad
T (t, s) = Ûad

T (t, s)P (s), t, s ∈ [−1, 1].

In fact it suffices to differentiate both terms in t, after acting on a vector in
DomH(t). Moreover from (4.12) we obtain

(4.14) ‖Ûad
T (t, s)‖B(E) ≤ C, t, s ∈ [−1, 1], T ≥ 1.
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4.4. Adiabatic theorem. We now state a version of the adiabatic theorem which
is sufficient for our purposes.

Theorem 4.4. Assume (H), (P ) and (D). Then there exists C > 0 such that:

‖ÛT (t, s)− Ûad
T (t, s)‖B(E) ≤ CT−1, t, s ∈ [−1, 1].

The theorem can be proved by repeating the arguments in the proof of [ASY,
Thm. 2.4]. For the reader’s convenience we will sketch its main steps.

We often remove the time variable for simplicity of notation. We set P = 1−P ,
and denote by X̃ the operator constructed in Lemma 4.3 for some strongly C1 map
t 7→ X(t). From P 2 = P we obtain PP ′ + P ′P = P ′ hence

(4.15) [P, P ′] = 2PP ′ − P ′ = 2P ′P − P ′.

It follows that:
(4.16)

PXP = P [X,P ]P = P [H, X̃ ]P = P [Had, X̃]P )− iT−1P [[P, P ′], X̃ ]P

= P [Had, X̃]P + iT−1P [P ′, X̃]P.

Lemma 4.5. Assume that [−1, 1] ∋ t 7→ X(t), Y (t) ∈ B(E) are strongly C1. Then
for t, s ∈ [−1, 1]:

´ t

s P (s)Û
ad
T (s, t1)X(t1)Û

ad
T (t1, s)P (s)Y (t1)dt1

= −iT−1
[

P (s)Ûad
T (s, t1)X̃(t1)Û

ad
T (t1, s)P (s)Y (t1)

]t

s

+iT−1
´ t

s P (s)Û
ad
T (s, t1)X̃

′(t1)Û
ad
T (t1, s)P (s)Y (t1)dt1

+iT−1
´ t

s
P (s)Ûad

T (s, t1)X̃(t1)Û
ad
T (t1, s)P (s)Y

′(t1)dt1

+iT−1
´ t

s
P (s)Ûad

T (s, t1)[P
′(t1), X̃(t1)]Û

ad
T (t1, s)P (s)Y (t1)dt1.

In particular we have:

(4.17) ‖

ˆ t

s

P (s)Ûad
T (s, t1)X(t1)Û

ad
T (t1, s)P (s)Y (t1)dt1‖B(E) ≤ CT−1,

where the constant C depends only on supt∈[−1,1] ‖X
(k)(t)‖+‖Y (k)(t)‖+‖P (k)(t)‖,

k = 0, 1.

Proof. From (4.16) we obtain:

P (s)Ûad
T (s, t)X(t)Ûad

T (t, s)P (s) = Ûad
T (s, t)P (t)X(t)P (t)Ûad

T (t, s)

= Ûad
T (s, t)P (t)[Had(t), X̃(t)]P (t)Ûad

T (t, s) + iT−1Ûad
T (s, t)P (t)[P ′(t), X̃(t)]P (t)Ûad

T (t, s)

= iT−1P (s)
(

−∂t(Û
ad
T (s, t)X̃(t)Ûad

T (t, s)) + Ûad
T (s, t)(X̃ ′(t) + [P ′(t), X̃(t)])Ûad

T (t, s)
)

P (s).

The lemma follows by integration by parts. ✷

Proof of Thm. 4.4.

We set for fixed s ∈ [−1, 1] ΩT (t, s) ··= Ûad
T (s, t)ÛT (t, s), so that

(4.18) ΩT (t, s) = 1+

ˆ t

s

RT (t1)ΩT (t1, s)dt1,

RT (t) = Ûad
T (s, t)[P (t), P ′(t)]Ûad

T (t, s).

From (4.13), (4.15) we have:

P (s)RT (t) = Ûad
T (s, t)P (t)[P (t), P ′(t)]Ûad

T (t, s)

= Ûad
T (s, t)P (t)[P (t), P ′(t)]P (t)Ûad

T (t, s)

= −P (s)Ûad
T (s, t)P ′(t)Ûad

T (t, s)P (s).
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Applying Lemma 4.5 to X(t) = P ′(t), Y (t) = ΩT (t, s) we obtain from (4.17)

‖

ˆ t

s

P (s)RT (t1)ΩT (t1, s)dt1‖ ≤ CT−1.

Exchanging the role of P and P we also obtain

‖

ˆ t

s

P (s)RT (t1)ΩT (t1, s)dt1‖ ≤ CT−1,

hence

‖ΩT (t, s)− 1‖B(E) ≤ CT−1, t, s ∈ [−1, 1].

This implies that

‖ÛT (t, s)− Ûad
T (t, s)‖B(E) ≤ CT−1, t, s ∈ [−1, 1]

and completes the proof. ✷

Proof of Thm. 3.4. Since UT (t, s) is symplectic, we have UT (−T, T )
∗qUT (−T, T ) =

q, hence using (3.6):

UT (−T, T )
∗λ±,vac

−1 UT (−T, T ) = qUT (T,−T )1R±(H(−1))UT (−T, T )

= qÛT (1,−1)1R±(H(−1))ÛT (−1, 1) = qÛad
T (1,−1)1R±(H(−1))Ûad

T (−1, 1) +O(T−1)

= q1R±(H(1)) +O(T−1) = λ±,vac
1 +O(T−1),

using Thm. 4.4 and (4.13) (remember that P (t) = 1R+(H(t))). ✷

5. Further results in the separable case

We consider now a simpler version of the setup in Subsects. 3.1, 3.2 where A = 0,
ht = h is independent on t and m(t, x) = m2(t). We assume

(HC) Σ is non compact, σ(−∆h) = [0,+∞[ is purely absolutely continuous.

The Klein-Gordon operator takes the form:

P̃ = P = ∂
2

t −∆h + χ(t)m2 =·· ∂
2

t + a(t),

where a(t) commutes with −∆h. It follows that the Klein-Gordon equation Pφ = 0
can be reduced to a family of 1− d Schrödinger equations:

(5.1) ∂2t φ+m2χ(t)φ + ǫ2φ = 0,

where ǫ = (−∆h)
1
2 , if one introduces a spectral decomposition of ǫ. This is known

in the physics literature as the mode decomposition method.
We show in Thm. 5.7 that the conclusion of Thm. 3.4 still holds when the initial

or final mass m(∓1) vanishes, ie when the stability condition (P ) is violated.
We next consider the adiabatic limit of an initial thermal state at temperature

β−1, and show in Thm. 5.3 that its adiabatic limit is not a thermal state (unless
the initial and final masses are the same).

Finally we consider the adiabatic limits of (infrared regular) Hadamard states
and show in Thm. 5.8 that their adiabatic limits are again Hadamard states.
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5.1. Energy estimates. We will set:

ǫ ··= (−∆h)
1
2 , ǫt = ǫ(t) ··= a(t)

1
2 , mt = m(t).

We set as in Subsect. 4.3:

ÛT (t, s) = Texp(iT

ˆ t

s

H(σ)dσ), t, s ∈ [−1, 1],

where now:

H(t) =

(

0 1

a(t) 0

)

.

We will consider the following three cases:

A : m(t) > 0, t ∈ [−1, 1],

B : m−1 = 0, m(t) strictly increasing,

C : m1 = 0, m(t) strictly decreasing.

Conditions (H) and (D) are always satisfied but condition (P ) is not satisfied in
cases B and C.

5.1.1. Modified energy spaces. We set (recall that H = L2(Σ, dV olh)):

(5.2)

A := 〈ǫ〉−
1
2H ⊕ 〈ǫ〉

1
2H,

Bt := ǫ−1
t ǫ

1
2H ⊕ ǫ

1
2H,

Ct := 〈ǫ〉−
1
2H ⊕ ǫt〈ǫ〉

− 1
2H.

which are well defined since Ker ǫ = {0}. We recall from Subsect. 1.1 that if

(5.3) S = {f ∈ H ⊗ C
2 : f = 1[δ,R](ǫ)f, R, δ > 0},

A , Bt Ct are the completion of S for the norms:

(5.4)

‖f‖2
A

··= ‖〈ǫ〉
1
2 f0‖

2
H ⊕ ‖〈ǫ〉−

1
2 f1‖

2
H,

‖f‖2
Bt

··= ‖ǫ−
1
2 ǫtf0‖

2
H + ‖ǫ−

1
2 f1‖

2
H,

‖f‖2
Ct

··= ‖〈ǫ〉
1
2 f0‖

2
H + ‖〈ǫ〉

1
2 ǫ−1

t f1‖
2
H.

5.1.2. Energy estimates.

Lemma 5.1. The following estimates hold for t ≤ s, t, s ∈ [−1, 1]:

(5.5)

case A : ‖ÛT (t, s)‖B(A ) ≤ C,

case B : ‖ÛT (t, s)‖B(Bs,Bt) ≤ C,

case C : ‖ÛT (t, s)‖B(Cs,Ct) ≤ C.

Proof. The estimate for case A follows from (4.12), using that ÛT (t, s) commutes

with 〈ǫ〉
1
2 . In case B, if f(t) = ÛT (t, s)f since a′(t) = 2m(t)m′(t) ≥ 0, we obtain

that d
dt‖f(t)‖

2
Bt

≥ 0 which implies the desired estimate. The same argument can
be used for case C. ✷
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5.2. Adiabatic limit of sesquilinear forms. We identify sesquilinear forms on
A , Bt or Ct with linear operators. In fact the canonical scalar product on H⊗C2

allows to identify A ∗ with 〈ǫ〉
1
2H ⊕ 〈ǫ〉−

1
2H, B∗

t with ǫ
1
2 ǫtH ⊕ ǫ−

1
2H, Ct with

〈ǫ〉
1
2H⊕ 〈ǫ〉

1
2 ǫ−1

t H. In this way we will identify a sesquilinear form λ with a linear
operator, still denoted by λ, by

f ·λf =·· (f |λf)H⊗C2 .

We denote such an operator by λ(ǫ) if all its entries are functions of the selfadjoint
operator ǫ.

If A =

(

a b
c d

)

we set Adiag =

(

a 0
0 d

)

. We set also

(5.6) T (t) ··= 2−
1
2

(

ǫ
− 1

2

t −ǫ
− 1

2

t

ǫ
1
2

t ǫ
1
2

t

)

, T
−1(t) = 2−

1
2

(

ǫ
1
2

t ǫ
− 1

2

t

−ǫ
1
2

t ǫ
− 1

2

t

)

.

Proposition 5.2. Let λ−1 = λ−1(ǫ) be a bounded sesquilinear form on A , B−1,
C−1 in cases (A), (B), (C) respectively. Then

λad1 ··= w− lim
T→+∞

ÛT (−1, 1)∗λ−1ÛT (−1, 1)

exists on A , B1, C1 and

(5.7) λad1 = T
−1(1)∗ (T (−1)∗λ−1T (−1))diag T

−1(1).

Proof. We first derive an asymptotic expansion in powers of T−1 for ÛT (t, s) =

Texp(iT
´ t

s H(σ)dσ) valid for t, s ∈ [−1, 1]. Setting h = T−1 this essentially
amounts to the construction of WKB solutions of a Schröedinger equation.

We will find this expansion by following the construction of a parametrix for
the Cauchy problem for Klein-Gordon equations done in [GW1, GOW], taking
advantage of the fact that the equation

(5.8) (T−1∂t)
2φ+ a(t)φ = 0

is separable. We first look for solutions of (5.8) of the form φ = Texp(iT
´ t

s
bT (σ)dσ)u

and obtain that φ solves (5.8) iff bT (t) solves the following Riccati equation:

(5.9) iT−1∂tbT (t)− b2T (t) + a(t) = 0.

We can solve (5.9) modulo errors of size O(T−2) by

(5.10) bT (t) = ǫ(t) +
i

2
T−1∂t ln ǫ(t).

We have then

(5.11) i∂tbT (t)− b2T (t) + a(t) = T−2(
1

4
(∂t ln ǫ)

2 −
1

2
∂2t ln ǫ)(t).

We set b+T (t) = bT (t), b
−
T (t) = −b∗T (t),

(5.12)
TT (t) ··=

(

1 −1
b+T −b−T

)

(t)(b+T − b−T )
− 1

2 (t),

T
−1
T (t) =

(

−b−T 1
−b+T 1

)

(t)(b+T − b−T )
− 1

2 (t),

and

ÛT (t, s) =: TT (t)VT (t, s)T
−1
T (s).

Mimicking the computations in [GOW, Subsect. 6.4], we easily obtain that

VT (t, s) = Texp(iT

ˆ t

s

ĤT (σ)dσ),
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for ĤT (t) = Hdiag(t) + T−2R(t), and:

(5.13)
Hdiag(t) =

(

ǫ(t) 0
0 −ǫ(t)

)

,

R2(t) = (2ǫ)−1(t)(14 (∂t ln ǫ)
2 − 1

2∂
2
t ln ǫ)(t)

(

−1 1
−1 1

)

.

Let us set

V diag
T (t, s) ··= Texp(iT

ˆ t

s

Hdiag(σ)dσ).

In case A, ǫt is bounded from below by a strictly positive constant, uniformly for
t ∈ [−1, 1] and we immediately deduce from (5.13) that

‖ÛT (t, s)− TT (t)V
diag
T (t, s)T −1

T (s)‖B(A ) ∈ O(T−1)

uniformly for t ≤ s, t, s ∈ [−1, 1]. We cannot use this argument in cases B,C since
0 ∈ σ(ǫt), either for t = −1 or t = 1. Instead we use a density argument, that we
will explain for case B, case C being similar.

From Lemma 5.1 we see that the family of sesquilinear forms

ÛT (−1, 1)∗λ−1ÛT (−1, 1)

is bounded on B1 uniformly for T ≥ 1. Therefore it suffices to prove (5.7) on the
dense subspace S defined in (5.3).

We have to compute the limit of (ÛT (−1, 1)f |λ−1ÛT (−1, 1)f)H⊗C2 for f ∈ S.

Since ÛT (−1, 1) and λ−1 commute with ǫ we see that if f = 1[δ,R](ǫ)f we can

replace ǫ by some function F (ǫ) such that 1
2δ ≤ F ≤ 2R, F (λ) = λ on [δ, R].

Equivalently we can assume that ǫ is boundedly invertible on H.
In this way we deduce from Lemma 5.1 and (5.13) that

lim
T→+∞

ÛT (−1, 1)f − TT (−1)V diag
T (−1, 1)T −1

T (1)f = 0, ∀f ∈ S.

Therefore we have as sesquilinear forms on S:

ÛT (−1, 1)∗λ−1ÛT (−1, 1)

= T
−1
T (1)∗V diag

T (−1, 1)∗λ̂−1,TV
diag
T (−1, 1)T −1

T (1) + o(T 0),

for λ̂−1,T = TT (−1)∗λ−1TT (−1). We have

V diag
T (t, s) =

(

u+T (t, s) 0
0 u−T (t, s)

)

for

u±T (t, s) = e±iT
´

t

s
ǫ(σ)dσ.

Since u±T (−1, 1) is unitary on H we can replace λ̂−1,T by

(5.14) λ̂−1 ··= T (−1)∗λ−1T (−1),

where T (t) is defined in (5.6). The error terms will again be o(T 0), by (5.10). We

write then λ̂−1 as

λ̂−1 =

(

λ̂++
−1 λ̂+−

−1

λ̂−+
−1 λ̂−−

−1

)

.

Using that λ̂αβ−1 for α, β ∈ {+,−} are functions of ǫ, we obtain that:

V diag
T (−1, 1)∗λ̂−1V

diag
T (−1, 1)

=

(

u+T (−1, 1)∗λ̂++
−1 u

+
T (−1, 1) u+T (−1, 1)∗λ̂+−

−1 u
−
T (−1, 1)

u−T (−1, 1)∗λ̂−+
−1 u

+
T (−1, 1) u−T (−1, 1)∗λ̂−−

−1 u
−
T (−1, 1)

)
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Now u+T (t, s) = u−T (t, s)
∗ and w− limT→+∞ u±T (t, s) = 0 in H, since the spectrum

of −∆h is purely absolutely continuous. This implies that

w− lim
T→+∞

V diag
T (−1, 1)∗λ̂−1V

diag
T (−1, 1) =

(

λ̂++
−1 0

0 λ̂−−
−1

)

= λ̂diag−1

in S. This completes the proof of the proposition in case B, the other cases being
similar. ✷

5.3. Adiabatic limit of vacuum, thermal states and Hadamard states. In
the sequel instead of the pair λ± of Cauchy surface covariances of some quasi-free
state, we will consider only λ+, (since λ− = λ+ − q) and denote it simply by λ.
The necessary and sufficient condition (2.6) becomes

(5.15) λ ≥ 0, λ− q ≥ 0.

Let ω−1 be a quasi-free state for the Klein-Gordon operator at time t = −1, ie

P−1 = ∂
2

t −∆h +m2
−1 and let λ−1 its covariance at time t = −1. In order to be

able to apply Prop. 5.2 to study the adiabatic limit λad1 of λ−1 we need that the
following properties are satisfied:
(1) λ−1 is bounded on A , resp. B−1, C−1;
(2) C∞

c (Σ)⊗ C2 ⊂ A , resp. B−1, C−1 continuously;
(3) C∞

c (Σ)⊗ C2 ⊂ A , resp. B1, C1 continuously.
In fact (1) is needed to obtain the existence of the adiabatic limit λad1 on A , resp.
B1, C1, while (2) and (3) imply that the initial covariance λ−1 and final covariance
λad1 are well defined on C∞

c (Σ)⊗ C
2.

In particular since (5.15) is automatically satisfied by λad1 , λad1 is the covariance
at time t = 1 of a quasi-free state ωad

1 for the Klein-Gordon operator at time t = 1,

ie P1 = ∂
2

t −∆h +m2
1.

5.3.1. Adiabatic limit of thermal states (case A). We assume we are in case A and
take as initial state the β−KMS state at time t = −1, given by the covariance:

λβ−1 =
1

2

(

ǫ−1 coth(βǫ−1/2) 1

1 ǫ−1
−1 coth(βǫ−1/2)

)

.

Theorem 5.3. The adiabatic limit

λβ,ad1 = w− lim
T→+∞

ÛT (−1, 1)∗λβ−1ÛT (−1, 1)

exists on C∞
c (Σ)⊗ C2. The adiabatic limit state ωβ,ad

1 is not the β−KMS state at
time t = 1, unless m1 = m−1.

Proof. Properties (1), (2), (3) are immediate for the space A , using that the
mass of the field is strictly positive. A routine computation shows that the limit

covariance λβ,ad1 in Prop. 5.2 equals:

(5.16) λβ,ad1 =
1

2

(

ǫ1 coth(βǫ−1/2) 1

1 ǫ−1
1 coth(βǫ−1/2)

)

.

This is not the covariance of the β−KMS state at time t = 1, unless m1 = m−1. ✷

Remark 5.4. The instability of KMS states under adiabatic limits can be related
to the failure of the return to equilibrium property analyzed in [DFP]. In this pa-

per the authors consider a couple of KMS states ωβ, ωβ
V with respect to different

dynamics τ ,τV . Here, τV is the one-parameter group of ∗-automorphism obtained
by perturbing the dynamics τ with a self-adjoint element V . The state ωβ is said

to satisfy the return to equilibrium property if w- limt→∞ ωβ ◦ τVt = ωβ
V . In [DFP]

it has been shown that, for quantum fields, such a property is linked to the support
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properties of V . Actually, if the spatial support of V is compact, then ωβ satisfies
the return to equilibrium property, while if V has non-compact spatial support this
is not the case.
In our case the adiabatic limit w− limT→+∞ ÛT (−1, 1)∗λβ−1ÛT (−1, 1) can be re-

lated with limt→∞ ωβ ◦ τVt , by identifying the perturbation V with the quadratic
perturbation

´

m2χ(t)φ2(x)dV olg, which is not of compact spatial support.

5.3.2. The infrared problem. To verify properties (2) (3), in particular the inclusions
C∞

c (Σ)⊗ C2 ⊂ B−1,C1, one is faced with a version of the infrared problem, ie the
fact that 0 ∈ σ(ǫ). In the lemma below we give a sufficient condition for (2), (3)
which is easy to verify in applications.

Lemma 5.5. Assume that:

(IR) there exists a continuous function c : Σ → R, c(x) > 0 such that −∆h ≥ c−2(x).

Then (2), (3) are satisfied.

Remark 5.6. If Σ = Rd and the metric h satisfies

(5.17) hij(x) ≥ Cδij , ∂
α
x hij(x) bounded for all α ∈ N

d,

then (IR) holds for c(x) = C〈x〉, see [GGH, Prop. A2].

Proof. We immediately see that if

(5.18) C∞
c (Σ) ⊂ Dom ǫ−

1
2 ∩Dom〈ǫ〉

1
2 ǫ−1 ∩Dom〈ǫ〉ǫ−

1
2

then properties (2) and (3) are satisfied. From functional calculus (5.18) holds if
C∞

c (Σ) ⊂ Dom ǫ−1. Setting A = c−2(x), B = −∆h = ǫ2 we have 0 < A ≤ B, which

by definition means that KerA = {0}, DomB
1
2 ⊂ DomA

1
2 and (u|Au) ≤ (u|Bu)

for u ∈ DomB
1
2 . By [K, Thm. V.2.21] this implies that 0 < (B+ δ)−1 ≤ (A+ δ)−1

for any δ > 0. Letting δ → 0+ we obtain 0 < B−1 ≤ A−1 ie Dom c ⊂ Dom ǫ−1,
which completes the proof since C∞

c (Σ) ⊂ Dom c ✷

5.3.3. Adiabatic limit of vacuum state (cases B, C). We assume that we are in
case B or C and take as initial state the vacuum state at time t = −1 given by the
covariance

λvac−1 =
1

2

(

ǫ−1 1

1 ǫ−1
−1

)

.

Theorem 5.7. Assume that (IR) holds. Then the adiabatic limit

λvac,ad1 = w− lim
T→+∞

ÛT (−1, 1)∗λvac−1 ÛT (−1, 1)

exists on C∞
c (Σ)⊗C2. The adiabatic limit state ωvac,ad

1 is the vacuum state at time
t = 1.

Proof. Property (1) holds by direct computation and (2), (3) hold by Lemma 5.5.
We apply then Prop. 5.2. The same computation as Thm. 5.3, which amounts to

set β = +∞ in (5.16), shows that λvac,ad1 is the covariance of the vacuum state at
time t = 1. ✷
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5.3.4. Adiabatic limit for a class of Hadamard states (cases A, B, C). We now take
as initial state a Hadamard state at time t = −1, whose covariance λ−1 is a function
of ǫ, as in Prop. 5.2. This corresponds exactly to a Hadamard state obtained by
mode decomposition arguments.

Let us first discuss the form of the covariance λ−1.

Recall that we have set T (−1)∗λ−1T (−1) =·· λ̂−1. Using that

T (−1)∗qT (−1) =

(

1 0
0 −1

)

=·· q̂,

the positivity condition (2.1) becomes

λ̂−1 ≥ 0, λ̂−1 ≥ q̂.

This is satisfied if

λ̂−1 =

(

1+ b∗b b∗dc
c∗db c∗c

)

,

for b, c, d ∈ L(H) and ‖d‖B(H) ≤ 1, see eg [GW1, Prop. 7.4]. The operators
b, c, d should be functions of ǫ, ie b = b(ǫ), c = c(ǫ), d = d(ǫ) for Borel measurable
functions b, c, d : R+ → R, the requirement ‖d(ǫ)‖ ≤ 1 being insured if |d(s)| ≤ 1
for s ∈ R+.

Finally λ−1 should be a Hadamard state, which is ensured if λ−1 − λvac−1 is infin-
itely smoothing. Using the ellipticity of −∆h, this is the case if

b(s), c(s) ∈ O(〈s〉−∞).

We now discuss the conditions (1), (2), (3) in the beginning of Subsect. 5.3.
We saw in Lemma 5.5 that (2), (3) are satisfied if condition (IR) holds, so it
remains to discuss condition (1), ie the fact that λ−1 is bounded on A , B−1 or

C−1. Equivalently if Â , B̂−1, Ĉ−1 are the images of A ,B−1,C−1 under T (−1)−1,

λ̂−1 should be bounded on Â , B̂−1, Ĉ−1, in cases (A), (B), (C).
An easy computation yields that:

Â = B̂−1 = Ĉ−1 = H ⊕ H ,

hence condition (1) is satisfied if b, c, d are bounded functions. Summarizing we
impose the following condition on the initial covariance:
(5.19)

λ̂−1 =

(

1+ b∗b(ǫ) b∗dc(ǫ)
c∗db(ǫ) c∗c(ǫ)

)

, for b, c, d : R+ → R, b(s), c(s) ∈ O(〈s〉−∞), |d(s)| ≤ 1.

Theorem 5.8. Let ω−1 be a Hadamard state at time t = −1, whose covariance λ−1

is such that λ̂−1 satisfies (5.19). In cases (B), (C) we assume moreover condition
(IR). Then the adiabatic limit

λad1 = w− lim
T→+∞

ÛT (−1, 1)∗λHad
−1 ÛT (−1, 1)

exists on C∞
c (Σ) ⊗ C2. The adiabatic limit state ωad

1 is a Hadamard state at time
t = 1.

Proof. the existence of λad1 follows from Prop. 5.2. We obtain that

(T (−1)∗λ−1T (−1))diag = λ̂diag−1 =

(

1 + |b|2(ǫ) 0
0 |c|2(ǫ)

)

.

It follows that λad1 = λvac1 + r, where

r =

(

ǫ1(|b|
2(ǫ) + |c|2(ǫ) |b|2(ǫ)− |c|2(ǫ)

|b|2(ǫ)− |c|2(ǫ) ǫ−1
1 (|b|2(ǫ) + |c|2(ǫ)

)

.
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Using that by (IR) C∞
c (Σ) ⊂ Dom ǫ−1

1 and the fact that b(s), c(s) ∈ O(〈s〉−∞) we
obtain that r is smoothing, hence ωad

1 is Hadamard. ✷
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