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Abstract. This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution
of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support
Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the
algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the
optimization problem arising in the inner loop of Gaussian Process classifiers.
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1. Introduction

Kernel logistic regression (kLOGREG) (Jaakkola & Haussler, 1999; Roth, 2001; Wahba,
1997; Zhu & Hastie, 2001), like Support Vector Machines (SVMs) (Vapnik, 1995) is a
powerful discriminative method. It also has a direct probabilistic interpretation that makes
it suited for Bayesian design. In this paper we develop a fast algorithm for kLOGREG
which is very much in the spirit of the popular Sequential Minimal Optimization (SMO)
algorithm (Platt, 1998; Keerthi et al., 2001) for SVMs. The algorithm does not do any matrix
operations involving the kernel matrix and hence is ideal for use with large scale problems.
It is also extremely easy to implement.

In this paper we focus on the two category classification problem. The multi-category
problem will be addressed in a future paper. Throughout we will use x to denote the input
vector of the classification problem and z to denote the feature space vector which is related
to x by the transformation, z = ϕ(x). As in all kernel designs, we do not assume ϕ to be
known; all computations will be done using only the kernel function, K (x, x̂) = ϕ(x) ·ϕ(x̂),
where “·” denotes inner product in the z space. Let {(xi , yi )} denote the training set, where
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xi is the i-th input pattern and yi is the corresponding target value; yi = 1 means xi is in
class 1 and yi = −1 means xi is in class 2. Let zi = ϕ(xi ). Kernel-based classification
methods solve the following optimization problem:

min
w,b

E = 1

2
‖w‖2 + C

∑

i

g(−yi (w · zi − b)), (1.1)

where C is a regularization parameter that is tuned using techniques such as cross validation.
For kLOGREG, g is given by:

g(ξ ) = log(1 + eξ ). (1.2)

It is the negative log-likelihood function associated with the probabilistic model

Prob(y | x) = 1

1 + e−y(w·ϕ(x)−b)
. (1.3)

Using the fact that w can be written as

w =
∑

i

αi yi zi , (1.4)

the problem (1.1) becomes a finite-dimensional convex programming problem:

min
α,b

E = 1

2

∑

i

∑

j

αiα j K̃ (xi , x j ) + C
∑

i

g(ξi ), (1.5)

where K̃ (xi , x j ) = yi y j K (xi , x j ) and ξi = yi b − ∑
j α j K̃ (xi , x j ). Roth (2001) and Zhu

and Hastie (2001) solve (1.5) using Newton iterations that require the inversion of K̃ at each
iteration. When the number of training examples is even as large as a few thousands, such
methods can become very expensive. An alternative is to solve (1.5) using gradient based
techniques. But such methods cannot exploit certain structures present in the problem at
hand. In this paper we employ the dual formulation of the form developed by Jaakkola and
Haussler (1999). This leads to the replacement of (1.5) by an alternate convex programming
problem1 with a structure that is very similar to the dual arising in SVMs. This allows us
to easily adapt the SMO algorithm for SVMs (Platt, 1998; Keerthi et al., 2001), which
optimizes only two αi ’s at each iteration (and therefore extremely easy to implement) and
is known to scale efficiently to large scale problems.

The optimization problem in (1.1) (with b omitted) also occurs in the inner loop of
Gaussian Process (GP) classifiers. Williams and Barber (1998) mention that computational
methods used to speed up the quadratic programming problem for SVMs may also be useful
for the GP classifier problems. Our algorithm precisely achieves that objective. For the
simplified problem, our algorithm can be viewed as an improved version of the coordinate-
wise descent method suggested by Jaakkola and Haussler (1999).
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The paper is organized as follows. In Section 2 we develop a dual of (1.1). Optimality
conditions for the dual are derived in Section 3. The ideas here form the basis for the
SMO algorithm for kLOGREG developed in Section 4. In that Section we also prove
that the algorithm is asymptotically convergent. Some practical aspects of the algorithm
are discussed in Section 5. Computational experiments comparing the SMO algorithm for
kLOGREG with the quasi-Newton method are reported in Section 6. Some concluding
remarks are made in Section 7.

2. Dual formulation

To derive a dual of (1.1), we use ideas very close to those given by Cauwenberghs (2001).
The optimization problem (1.1) can be rewritten as:

min
w,b

E = 1

2
‖w‖2 + C

∑

i

g(ξi ) (2.1a)

subject to : ξi = −yi (w · zi − b) ∀ i. (2.1b)

The Lagrangian for this problem is:

L = 1

2
‖w‖2 + C

∑

i

g(ξi ) +
∑

i

αi [−ξi − yi (w · zi − b)].

The optimality conditions are given by:

∇w L = w −
∑

i

αi yi zi = 0 (2.2a)

∂L

∂b
=

∑

i

αi yi = 0 (2.2b)

∂L

∂ξi
= Cg′(ξi ) − αi = 0 ∀ i. (2.2c)

Note that w and ξi can be expressed as functions of the αi ’s using (2.2a) and (2.2c):

w(α) =
∑

i

αi yi zi , ξi (αi ) = g′−1

(
αi

C

)
. (2.3)

Let δ = αi
C . Since ξi can be expressed in terms of αi , consider the function

G(δ) = δξi − g(ξi ). (2.4)
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Note that this function forms a part of L . Differentiating G with respect to δ and using
(2.2c), we get

dG

dδ
= δ

dξi

dδ
+ ξi − g′(ξi )

dξi

dδ
= ξi = g′−1(δ). (2.5)

Therefore, G can be obtained using

G ′(δ) = g′−1(δ). (2.6)

Remark 1. When g is given by (1.2), we have g′(ξ ) = eξ /(1 + eξ ). Thus g′ is invertible.
The range of g′ is the open interval, (0, 1) and hence g′−1 is a well-defined function in the
domain (0, 1).

It is easy to verify, by checking the non-negativity of second order derivatives, that, if g
is a convex function then G is also a convex function. For the case of logistic regression g
is given by (1.2) and we have:

g′−1(u) = log(u/(1 − u))

G(δ) = δ log δ + (1 − δ) log(1 − δ) (2.7)

G ′(δ) = log

(
δ

1 − δ

)
, G ′′(δ) = 1

δ(1 − δ)
.

Let us now apply Wolfe duality theory to (2.1). The Wolfe dual corresponds to the
maximization of L subject to (2.2a)–(2.2c), with w, b, ξi ’s and αi ’s as variables. Using
(2.2b), (2.3) and (2.4) we can simplify the Wolfe dual as

min
α

f (α) = 1

2
‖w(α)‖2 + C

∑

i

G

(
αi

C

)

(2.8)
subject to

∑

i

αi yi = 0.

This is a convex programming problem. Once the αi ’s are obtained by solving (2.8), the
primal variables, w and ξi ’s can be determined using (2.3). The determination of b will be
addressed in the next section.

3. Optimality conditions for dual

To derive proper stopping conditions for algorithms which solve the dual and also determine
the threshold parameter b, it is important to write down the optimality conditions for the
dual. The Lagrangian for (2.8) is:

L̄ = f − β
∑

i

αi yi = 1

2
‖w(α)‖2 + C

∑

i

G

(
αi

C

)
− β

∑

i

αi yi . (3.1)
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Define

Fi = w(α) · zi =
∑

j

α j y j K (xi , x j )

and Hi = Fi + yi G
′
(

αi

C

)
. (3.2)

The optimality conditions for the dual problem are:

∂ L̄

∂αi
= (Hi − β)yi = 0 ∀ i. (3.3)

Define:

bup = max
i

Hi iup = arg max
i

Hi (3.4a)

blow = min
i

Hi ilow = arg min
i

Hi . (3.4b)

Then optimality conditions will hold at a given α iff

blow = bup. (3.5)

Remark 2. In the above discussion, note that f , Fi , Hi , bup, iup, blow and ilow are all
functions of α. The functional dependancies have not been put down to avoid notational
clutter. These functions are appropriately defined on some set A in the α space; for instance,
in the case of g given by (1.2), Remark 1 implies that

A = {α : 0 < αi < C ∀i }. (3.6)

Using (3.3), (3.2), (2.5) and (2.1b), it is easy to see the close relationship between the
threshold parameter b in the primal problem and the multiplier, β. In particular, at optimality,
β and b are identical. Therefore, in the rest of the paper β and b will denote one and the
same quantity.

We will say that an index pair (i, j) defines a violation at α if

Hi �= Hj . (3.7)

Thus, optimality conditions will hold at α iff there does not exist any index pair (i, j) that
defines a violation.

Suppose (i, j) satisfies (3.7) at some α. Then it is possible to achieve a decrease in f
(while maintaining the equality constraint,

∑
αk yk = 0) by adjusting αi and α j only. To

see this, let us define the following:

α̃i (t) = αi + t/yi , α̃ j (t) = α j − t/y j ,
(3.8)

α̃k(t) = αk ∀k �= i, j,
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and

φ(t) = f (α̃(t)). (3.9)

For logistic regression f is strictly convex, and hence, by (3.8) and (3.9) φ is also strictly
convex. The domain of φ is the open interval defined by {t : α̃(t) ∈ A}. It is easy to verify
that

φ′(t) = Hi − Hj , (3.10)

where Hi and Hj are evaluated at α̃(t). Since, by (3.7), Hi − Hj �= 0 at t = 0, a decrease
in φ is possible by choosing t suitably away from 0.

Since, in numerical solution, it is usually not possible to achieve optimality exactly, there
is a need to define approximate optimality conditions. The condition (3.5) can be replaced
by

blow ≥ bup − 2τ, (3.11)

where τ is a positive tolerance parameter. Once (3.11) is achieved, we can take

b = blow + bup

2
(3.12)

for use with (1.3).
A useful alternative for stopping and choosing threshold is to employ the duality gap,

Dgap = E + f . By Wolfe duality theory: Dgap is nonnegative; and, Dgap = 0 iff optimality
holds. Thus we can use the stopping criterion:

Dgap ≤ ε| f |, (3.13)

where ε is a suitable positive tolerance. Dgap can be computed as follows. Given α, let w(α)
be given by (2.3) and ξ (b) be obtained from (2.1b). Then

Dgap = E + f = ‖w(α)‖2 + C
∑

i

[
G

(
αi

C

)
+ g(ξi (b))

]
. (3.14)

Also, b can be chosen to minimize Dgap. This is equivalent to minimizing
∑

i g(ξi (b)),
which can be numerically done using Newton-Raphson iterations.

4. SMO algorithm for kLOGREG

In this section we give the SMO algorithm for kLOGREG, for which g is given by (1.2).
A basic step consists of starting with a point α and optimizing only two variables αi and
α j to form the new point αnew. Consider (3.8) and (3.9). Given (3.10), the natural choice
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is i = iup and j = ilow so as to make |φ′(0)| as large as possible. Using the notations of
Section 3, we can write the optimization problem and the resulting solution as

t
 = arg min
t

φ(t) and αnew = α̃(t
). (4.1)

The SMO algorithm can now be described.

SMO Algorithm for kLOGREG.

1. Choose α0 ∈ A and set r = 0.
2. If αr satisfies (3.5), stop. If not, set α = αr , choose i = iup, j = ilow and solve (4.1).
3. Let αr+1 = αnew, r := r + 1 and go back to step 2.

Remark 3. Let B = {α ∈ A : f (α) ≤ f (α0)}. Continuity of f implies that B is closed in
A; since B ⊂ A, B is also bounded; furthermore, since f (α̂k) → ∞ for any sequence α̂k

that goes to a boundary point of A, B is compact in Rm (m is the number of α variables,
which is same as the number of training examples). Since the SMO algorithm is a descent
algorithm, αr ∈ B ∀r . Thus every iteration of the algorithm is well-defined.

We now establish the convergence of the SMO algorithm described above. The absence
of ‘hard boundaries’ in the optimization makes the proof of convergence much simpler than
corresponding proofs for SMO algorithm for SVMs. We first establish a useful result.

Lemma 1. The following holds for each r ≥ 0:

f (αr ) − f (αr+1) ≥ 2

C
‖αr+1 − αr‖2.

Proof: The second order truncated Taylor series expansion of φ around t
 is given by

φ(t) = φ(t
) + 1

2
φ′′(t̃)(t − t
)2, (4.2)

where t̃ lies in between t and t
 and is dependent on them. The second order derivative of
φ has the expression

φ′′(t) = η + 1

C

[
G ′′

(
α̃i (t)

C

)
+ G ′′

(
α̃ j (t)

C

)]
, (4.3)

where η = K (xi , xi ) − 2K (xi , x j ) + K (x j , x j ). Using the expression for G ′′ in (2.7) we
can get the bound, φ′′(t) ≥ (8/C). Employing this in (4.2) and setting t = 0 we get

f (αr ) − f (αr+1) = φ(0) − φ(t
) ≥ 4

C
(t
)2 = 2

C
‖αr+1 − αr‖2.

This proves Lemma 1.
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Theorem 1. The following hold.

1. {αr } has at least one limit point in A.

2. Every limit point of {αr } lies in A and it is a solution of (2.8).

Proof: By Remark 3 {αr } ⊂ B. Since B is compact in Rm , {αr } has a limit point in B;
also, every limit point of {αr } lies in B. Since B ⊂ A, every limit point of {αr } lies in A
too.

Since the algorithm decreases f at each step and f is bounded below, { f (αr )} is a
convergent sequence. By Lemma 1 we immediately get that {αr+1 − αr } converges to 0.

Now let {αr (s)}s≥0 denote a convergent subsequence and ᾱ denote the limit point in A to
which it converges. For any r ≥ 0, let i(r ) = iup(αr ) and j(r ) = ilow(αr ), the two indices
chosen for optimization at the r -th step. Since φ′(t
) = 0 for t
 given by (4.1), we get from
(3.10) that

Hi(r )(α
r+1) − Hj(r )(α

r+1) = 0. (4.4)

Since there are only a finite number of indices, there exists at least one pair (i1, j1) such that
i1 = i(r (s)) and j1 = j(r (s)) for infinitely many s. Let us restrict ourselves to only such a
subsequence. To keep notations simple, let us rename the subsequence and take that

i1 = i(r (s)) = iup
(
αr (s)

)
and

j1 = j(r (s)) = ilow
(
αr (s)

) ∀ s ≥ 0.

Since bup and blow are continuous functions of α, we also get

bup(ᾱ) − blow(ᾱ) = lim
s→∞

[
bup

(
αr (s)

) − blow
(
αr (s)

)]

= lim
s→∞

[
Hi1

(
αr (s)

) − Hj1

(
αr (s)

)]

= lim
s→∞[P(s) + Q(s) + R(s)], (4.5)

where

P(s) = [
Hi1

(
αr (s)

) − Hi1

(
αr (s)+1

)]

Q(s) = [
Hi1

(
αr (s)+1

) − Hj1

(
αr (s)+1

)]

R(s) = [
Hj1

(
αr (s)+1

) − Hj1

(
αr (s)

)]
. (4.6)

Since {αr (s)+1 − αr (s)} converges to 0, lims→∞ P(s) = 0 and lims→∞ R(s) = 0. By (4.4),
Q(s) = 0 ∀s. Thus (4.5) yields bup(ᾱ) − blow(ᾱ) = 0. By (3.5), ᾱ is a solution of (2.8).
This completes the proof.
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5. Practical aspects

In practice, we can use (3.11) instead of (3.5) in step 2 of the SMO algorithm. When this
is done, one expects the algorithm to converge to an approximate solution satisfying (3.11)
within a finite number of steps.

The univariate optimization problem (4.1) can be solved using Newton-Raphson itera-
tions:

t l+1 = t l − [φ′′(t l)]−1φ′(t l) (5.1)

starting from t0 = 0 and until a certain accuracy is reached. (To get guaranteed convergence,
we can suitably combine Newton-Raphson iterations with some bisection steps when nec-
essary.) With the required accuracy (3.11) in mind, we can terminate the iterations in (5.1)
when we find a point t l satisfying a tighter accuracy criterion, say φ′(t l) < 0.1τ . While
φ′(t l) is given by (3.10), φ′′(t l) can be computed using the formula (4.3).

Since the function Hk plays an important role in the algorithm it is better to maintain a
cache for {Hk}. At the end of the k-th step involving indices i and j , we can use the update
formula

Hk(αr+1) = Hk(αr ) + yi
[
αr+1

i − αr
i

]
K (xk, xi )

+ y j
[
αr+1

j − αr
j

]
K (xk, x j )

= Hk(αr ) + t
[K (xk, xi ) − K (xk, x j )] ∀ k �= i, j. (5.2)

For k = i, j , Hk(α̃(t)) is needed at various t l values in order to implement (5.1) via (3.10).
For these two special indices, we can use the following update formula:

Hk(α̃(t l+1)) = Hk(α̃(t l))

+ yi (α̃i (t
l+1) − α̃i (t

l))K (xk, xi )

+ y j (α̃ j (t
l+1) − α̃ j (t

l))K (xk, x j )

+ yk

[
G ′

(
α̃k(t l+1)

C

)
− G ′

(
α̃k(t l)

C

)]
for k = i, j. (5.3)

At each step, the solution of (4.1) via (5.1), (3.10), (5.3) and (4.3) is very efficient and
takes very little (constant time) effort. The updating of Hk by (5.2) after completion of the
solution of (4.1) requires O(m) effort where m is the number of training examples; it forms
the main bulk of the computational cost.
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The solution of (4.1) can come across a certain ill-conditioned situation which requires
special handling. Let α̃(t) be as in (3.8). From (3.10) and (3.2) we have

0 = φ′(t
) = Hi − Hj

= Fi − Fj + yi G
′
(

α̃i (t
)

C

)
− y j G

′
(

α̃ j (t
)

C

)
.

Suppose the size of Fi − Fj is in the order of 105. (Such sizes are very much possible when
a large value is tried for C .) Therefore, for Hi − Hj = 0 to occur, we require the size of
G ′( α̃i (t
)

C ) and/or G ′( α̃ j (t
)
C ) to be in the order of 105, which is possible only if at least one of

α̃i (t
), C − α̃i (t
), α̃ j (t
), or C − α̃ j (t
) is extremely small, i.e., with size e−105
. In such a

case, a reliable determination of t
 is messy and difficult. As we now explain, an accurate
determination of t
 in this case is actually unnecessary. Suppose t
, the solution of (4.1) is
such that one of the variables, say α̃i (t
) is extremely close to 0 or C . Since pushing α̃i (t) to
an accurate value close to 0 or C has only to do with setting yi G ′( α̃i (t)

C ) precisely and it has
little effect on Fi or Fj , the accurate determination of t
 is unimportant. However, having
said that, we should also note that, if we decide to avoid a precise determination of t
 then
the value of Hi becomes unreliable and so such indices have to be treated specially when
checking for optimality.

To handle the issue cleanly and reliably, we proceed as follows. Let µ be a small number,
say 103× machine precision. Define I = (0, C) and Ĩ = (µC, C − µC). If, during the
solution of (4.1), we come across a situation2 at which we know that for an index, say i , we
have αi (t
) ∈ I\ Ĩ , then we terminate the solution of (4.1) and place α̃i (t) at the appropriate
end point of Ĩ (i.e., µC or C −µC). In that case, since Hi is unreliable we need to treat such
indices specially. So we put such indices in a special group called NBG (Near Boundary
group). Other indices whose α values lie inside Ĩ will be put in NG (Normal group).

Once an index gets into NBG it is best not to involve it in further optimization. However,
at the end of the optimization, a check on indices in NBG has to be conducted to be sure
that moving such indices back to NG does not lead to an improvement in objective function.
Thus a two loop approach is needed for the SMO algorithm.3 Since Hi , i ∈ NBG are not
reliable, at any stage of the algorithm we always compute iup, bup, ilow and blow using only
indices from NG. The inner loop repeatedly operates steps 2 and 3 of the SMO algorithm,
using (3.11) instead of (3.5) so as to obtain finite termination. When the inner loop satisfies
(3.11), we go into the outer loop where each index, i ∈ NBG is checked for optimality.
This is done by attempting to solve (4.1) twice, once with j = ilow and then again with
j = iup. If, in each of these solutions we find that no change has occured (i.e., i ∈ NBG
and αi remains at the same end point of Ĩ ), then optimality holds as far as i is concerned. If,
during the outer loop, αi changes even for one i , then the inner loop is entered again after
the outer loop is completed. On the other hand, if none of the αi has changed in the outer
loop, then optimality holds for all i and the SMO algorithm is terminated.

6. Numerical experiments

First we empirically evaluate the computational cost of our SMO algorithm for kLOGREG.
Note that this algorithm solves the dual (2.8) and that the corresponding primal formulation
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(2.1) is equivalent to the formulation (1.5). To solve kLOGREG, Roth (2001) and Zhu and
Hastie (2001) used second order optimization methods that require the storage and inversion
of the Hessian matrix, to solve (1.5). When the number of examples is more than a few
thousand these methods become very expensive. So, with the solution of larger problems
also in mind, we compare our method with the limited memory BFGS algorithm4 (Liu and
Nocedal) for solving (1.5). Since our algorithm solves the dual and the BFGS algorithm
solves the primal and they use different approximate stopping criteria, comparison of their
computational costs becomes difficult. To make the comparison fair, we proceed as follows.
First we solve the dual by our SMO algorithm using (3.11) for stopping, and note the
computing time required. The α, along with the value of b (see (3.12)) obtained by the
SMO algorithm are used to define a feasible (w, b) for the primal problem (1.1). This (w, b)
attains a certain (sub-optimal) value for the primal objective function. The BFGS algorithm
for solving (1.5) is then run until the above value of the primal objective function is reached.
The corresponding computing time was used for comparison purposes.

The SMO algorithm for kLOGREG was implemented in C and executed on the Sun Blade
100 workstation which uses a 500 MHz UltraSPARC-IIe processor and the Solaris OS. For
the BFGS method, the freely available software at the site http://www.ece.nwu.edu/~
nocedal/lbfgs.html was used. The Gaussian kernel K (x, x̄) = exp(−‖x−x̄‖2

2σ 2 ) was used.
In all the experiments, τ was set to 10−6. Five benchmark datasets were used: Banana,
Image, Splice, Waveform and Tree. The Tree dataset was originally used in Bailey et al.
(1993). Detailed information about the remaining datasets can be found in Rätsch (1999).
Some details about these datasets are given in Table 1.

Let us now explain how the α’s were initialized. For the SMO algorithm it is necessary to
have αi ∈ (0, C) ∀i . Let m1 and m2 denote, respectively, the number of training examples
in class 1 and class 2. The α’s were initialized to C

m1
and C

m2
respectively for the examples in

class 1 and class 2. This initialization was used for both the SMO algorithm as well as the
BFGS algorithm. Unlike the SMO algorithm, the BFGS algorithm for (1.5) can actually be
initialized with any values for the α’s. However, it was observed that there was no noticeable
change in the CPU times for the BFGS algorithm when the α’s were initialized to values
other than those mentioned above, for example setting all α’s to zero.

Just for the purpose of comparing training times σ was fixed at a specific value which
is optimal for the generalization performance of kLOGREG. The CPU times for different

Table 1. Properties of datasets.

Number of Number of Number of
Dataset input variables training examples test examples

Banana 2 400 4900

Splice 60 1000 2175

Waveform 21 400 4600

Tree 18 700 11692

Image 18 1300 1010
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Table 2. Computational costs for SMO and BFGS algorithms.

Banana Splice Waveform Tree Image
σ 2 = 0.4297 σ 2 = 43.8856 σ 2 = 15.2735 σ 2 = 2.00 σ 2 = 1.3776

C̃ SMO BFGS SMO BFGS SMO BFGS SMO BFGS SMO BFGS

−4 0.6 23.0 18.0 1.1e3 2.4 69.6 3.9 200.1 40.6 916.4

−3 0.6 15.2 16.7 588.2 2.1 42.4 3.4 153.4 41.2 520.2

−2 0.5 13.4 14.0 760.1 2.1 57.2 2.5 217.8 31.1 671.0

−1 0.3 55.4 10.2 2.3e3 1.5 156.1 2.6 1.1e3 25.5 3.2e3

0 0.5 255.2 13.2 6.1e3 2.9 478.8 4.0 5.5e3 41.0 9.2e3

1 1.2 963.1 22.1 2.88e4 5.5 1.9e3 7.2 4.3e4 63.2 4.6e4

2 4.0 3.1e3 32.0 – 13.0 3.5e3 20.7 – 99.0 –

3 41.6 – 40.0 – 20.5 5.8e3 1.1e2 – 178.6 –

4 8.4e2 – 54.2 – 24.9 – 7.1e2 – 6.2e2 –

The first column indicates C̃ , which is log10 C . Each unit denotes CPU time (in seconds). “–” denotes the cases
for which CPU times were larger than 50000 seconds and hence training was abandoned.

datasets are given in Table 2 as functions of C . From this table it is clear that the SMO
algorithm for kLOGREG is very much faster than the BFGS algorithm. The difference is
much higher for large values of C .

To see how the cost of the SMO algorithm scales with data size, an experiment was done
on the UCI “Adult” dataset (Merz and Murphy, 1998) by gradually increasing the training
set size from 1605 to 22696 in eight steps and observing the training time. A line was
then fitted to the plot of the log of the training time versus the log of the training set size.
The slope of this line is the empirical scaling exponent. The datasets of different sizes that
are used are available in http://www.research.microsoft.com/˜jplatt/adult.zip. The training
was done with both, the linear kernel (C = 0.05) and the Gaussian kernel (C = 1.0 and
σ 2 = 10). The SMO algorithm for kLOGREG scales well on this dataset, with the scaling
exponent of 2.2 on both, the linear kernel as well as the Gaussian kernel; thus computing
time is roughly proportional to m2.2 where m is the training set size.

Kernel logistic regression minimizes the negative log-likelihood function associated with
a probabilistic model along with the regularizer term. Thus it naturally provides values for
posterior class probabilities. To see how good the designed probabilistic model is, we first
compared it with the optimal Bayes classifier on an artificial two-category classification
problem. For this purpose, the examples in the two classes were generated using Gaussian
distributions with the following means and covariance matrices: µ1 = (−2, 0), 
1 =
Diag{1, 2}, µ2 = (2, 0), 
2 = Diag{2, 1}. The priors for the two classes were taken to be
equal. 400 training points were used. A test set of size 20000 was generated using the same
distributions.

Five-fold cross validation was used to tune the hyperparameters involved in the problem
formulations (that is, C and σ ) and the test set error was obtained using the optimal hyperpa-
rameter values for each of the formulations. The initial search for optimal hyperparameters
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Table 3. Negative log-likelihood of the test set (NLL) and the fraction of test set errors (TErr) for optimal Bayes
classifier (Bayes), kLOGREG (KLR) and SVM on the two dimensional artificial dataset.

Method NLL TErr

Bayes 2532.5 0.0490

KLR 2663.4 0.0502

SVM 2703.5 0.0507

Table 4. Generalization performance comparison of kLOGREG (KLR) and SVM on the five benchmark datasets.

NLL TErr

Dataset KLR SVM KLR SVM

Banana 1328.44 1378.39 .1245 .1247

Image 85.12 83.26 .0178 .0198

Splice 615.22 542.61 .0952 .0989

Waveform 1162.93 1137.70 .1041 .1063

Tree 3547.15 3116.32 .1129 .1123

was done on a 10 × 10 uniform coarse grid in the (log C, log σ ) space, followed by a fine
search on a 20 × 20 uniform grid in the (C, σ ) space placed around the optimal pair found
by the coarse search.

Table 3 gives the negative log-likelihood of the test set and the fraction of test errors for the
optimal Bayes classifier and the kLOGREG method. This table also gives the corresponding
values for SVM with posterior probabilities assigned in a post-processing step (Platt, 1999).
Clearly, both kLOGREG and SVM perform quite well.

To further study and compare the generalization capabilities of kLOGREG and SVM
methods, we determined their performance on the five benchmark datasets mentioned ear-
lier. As in the artificial dataset, five fold cross validation was used to tune the hyperparam-
eters C and σ . The test set results are given in Table 4. It is clear that the generalization
capabilities of both methods are comparable. This observation is consistent with that made
by Platt (1999).

7. Conclusion

In this paper we have given a new algorithm for kLOGREG, proved its convergence and
discussed implementation aspects. The algorithm solves the dual problem. It is very much
faster than the BFGS algorithm applied to the primal problem. The algorithm scales nicely
to large size problems. It is also robust in the sense that on many complex datasets we
have tried there was not even a single case of failure. The generalization performance of
kLOGREG is comparable to that of SVMs.

The in-built probabilistic model makes kLOGREG suitable for use with Bayesian de-
sign. In fact, the algorithmic ideas given in this paper can be easily adapted for solving
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the optimization problem arising in the inner loop of Gaussian Process classifiers. This
optimization problem is simpler to solve than (1.1) since b is absent, thereby getting rid
of the equality constraint in (2.8).5 Correspondingly, the optimality conditions in (3.3) get
replaced by the following conditions:

Hi = 0 ∀ i. (7.1)

Because of the absence of an equality constraint on α, it is possible to decrease f by
minimizing only one αi at a time. Jaakkola and Haussler (1999) suggest the Gauss-Seidel
coordinate-wise descent method for doing this. A better option is to choose, at any given
situation, the index, i = arg mink |Hk | (i.e., i is the index that violates (7.1) most) and
optimize αi only. Together with a cache for {Hk} and update formulas similar to (5.2) and
(5.3), such an algorithm will be very efficient.

kLOGREG does not enjoy the sparsity property associated with SVMs. (Note that αi ∈ A
and therefore αi > 0 for all i .) Recent research by Zhu and Hastie (2001) has initiated useful
ways of incorporating sparsity in kLOGREG. Further work along these lines, together with
fast algorithms such as the one in this paper are expected to make kLOGREG an attractive
tool for solving classification problems.
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Notes

1. Although both, the dual problem and (1.5), involve αi ’s as the variables and lead to the same solutions, their
structures are markedly different.

2. This situation usually arises when the solution process of (4.1) necessarily pushes either α̃i (t) or α̃ j (t) to a
value outside Ĩ , i.e., at a t corresponding to an end point of Ĩ , descent in φ requires a movement out of Ĩ .

3. This is somewhat similar to what is done in the SMO algorithm for SVMs.
4. In our experiments the number of memory steps used by BFGS is 5.
5. In Gaussian Process classifiers, the effect of b can be taken care of by adding a constant to the covariance

function.
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