Skip to main content
Log in

Cationic Antimicrobial Peptides Cytotoxicity on Mammalian Cells: An Analysis Using Therapeutic Index Integrative Concept

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) represent a class of molecules synthesized by different organisms as an ancient innate defense mechanism against different pathogens like bacteria, fungi, viruses. Their characteristics make them good candidates to fight against bacteria together with or as an alternative to antibiotics. To decide on AMPs suitability for use in mammalian systems we redefined a ‘therapeutic index’ using the concentrations for which AMP is active against pathogens without inducing cytotoxic damage to the mammalian cells. Here we analyzed the toxic effects of eleven, highly active cationic AMPs towards human cells. The AMPs cytotoxicity was determined using common standardized assays measuring their effect on red blood cells (hemolytic index) and on lymphocytes (cell viability). The therapeutic index was calculated for all the AMPs tested. The highest therapeutic index was found for cecropins followed by magainins and the smallest for Melittin. For two peptides, Cecropin A which presents the highest therapeutic index and Melittin with the smallest therapeutic index we characterized in detail the cell death process distinguishing between apoptosis and necrosis. The toxic effects produced by Cecropin A and Melittin are induced mostly by means of apoptosis suggesting that the definition of therapeutic index has to consider the apoptotic effects of AMPs. Thus we provided here a unitary way to characterize the side effects of AMPs. The analysis of in vitro cytotoxic effects of AMPs using the global concept of therapeutic index can be a powerful way to decide which peptide can be taken for further testing in preclinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Argiolas A, Pisano JJ (1983) Facilitation of phospholipase-A2 activity by mastoparans, a new class of mast-cell degranulating peptides from wasp venom. J Biol Chem 258:3697–3702

    Google Scholar 

  • Andra J, Monreal D, Martinez de Tejada G, Olak C, Brezesinski G, Gomez SS, Goldmann T, Bartels R, Brandenburg K, Moriyon I (2007) Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens. J Biol Chem 282:14719–14728

  • ASTM (2000) F 756-00—standard practice for assessment of hemolytic properties of materials. American Society for Testing of Materials, West Conshohocken

    Google Scholar 

  • Avram S, Duda-Seiman D, Borcan F, Radu B, Duda-Seiman C, Mihailescu D (2011) Evaluation of antimicrobial activity of new mastoparan derivatives using QSAR and computational mutagenesis. Int J Pept Res Ther 17:7–17

    Article  CAS  Google Scholar 

  • Barnette MS, Daly R, Weiss B (1983) Inhibition of calmodulin activity by insect venom peptides. Biochem Pharmacol 32:2929–2933

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Cederlund A, Gudmundsson GH, Agerberth B (2011) Antimicrobial peptides important in innate immunity. FEBS J 278:3942–3951

    Article  CAS  PubMed  Google Scholar 

  • Ceron JM, Contreras-Moreno J, Puertollano E, de Cienfuegos GA, Puertollano MA, de Pablo MA (2010) The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31:1494–1503

    Article  CAS  PubMed  Google Scholar 

  • Cerovsky V, Slaninova J, Fucik V, Hulacova H, Borovickova L, Jezek R, Bednarova L (2008) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003

  • Chen YX, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi H, Lee W, Lee DG (2013) A new concept on mechanism of a ntimicrobial peptides: apoptosis induction. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combtating them: science, technology and education, vol 4. Formatex Research Center

  • Hancock RE, Falla T, Brown M (1995) Cationic bactericidal peptides. Adv Microb Physiol 37:135–175

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. BBA-Biomembranes 1778:357–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K (2007) Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta 1768:1160–1169

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390

    Article  PubMed  Google Scholar 

  • Janko C, Munoz L, Chaurio R, Maueröder C, Berens C, Lauber K, Herrmann M (2013) Navigation to the graveyard-induction of various pathways of necrosis and their classification by flow cytometry. In: Kimberly McCall CK (ed) Necrosis: methods in molecular biology, vol 1004. Humana Press, Springer Science + Business Media, LLC, pp 3–15

  • Liu YF, Han FF, Xie YG, Wang YZ (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624

    Article  CAS  PubMed  Google Scholar 

  • Maria-Neto S, Candido Ede S, Rodrigues DR, de Sousa DA, da Silva EM, de Moraes LM, Otero-Gonzalez Ade J, Magalhaes BS, Dias SC, Franco OL (2012) Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 56:1714–1724

  • Miskimins Mills BE (2010) Modulatory activities of glycosaminoglycans and other polyanionic polysaccharides on cationic antimicrobial peptides. University of Iowa, PhD diss

  • Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37:1077–1089

  • Mor A, Nicolas P (1994) The Nh2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem 269:1934–1939

    CAS  PubMed  Google Scholar 

  • Nakao S, Komagoe K, Inoue T, Katsu T (2011) Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells. BBA-Biomembranes 1808:490–497

    Article  CAS  PubMed  Google Scholar 

  • Nan YH, Bang JK, Shin SY (2009) Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides 30:832–838

  • Ozawa M, Ferenczi K, Kikuchi T, Cardinale I, Austin LM, Coven TR, Burack LH, Krueger JG (1999) 312-nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. J Exp Med 189:711–718

  • Pan WR, Chen PW, Chen YLS, Hsu HC, Lin CC, Chen WJ (2013) Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci 96:7511–7520

    Article  CAS  PubMed  Google Scholar 

  • Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, Scocchi M, Stensvag K (2013) Structure-activity relationships of the antimicrobial peptide arasin 1—and mode of action studies of the N-terminal, proline-rich region. Plos One 8:e53326

  • Petcu I, Savu D, Thierens H, Nagels G, Vral A (2006) In vitro radiosensitivity of peripheral blood lymphocytes in multiple sclerosis patients. Int J Radiat Biol 82:793–803

    Article  CAS  PubMed  Google Scholar 

  • Radu BM, Bacalum M, Marin A, Chifiriuc CM, Lazar V, Radu M (2011) Mechanisms of ceftazidime and ciprofloxacin transport through porins in multidrug-resistance developed by extended-spectrum beta-lactamase E. coli strains. J Fluoresc 21:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, An FY, Shelburne CE (2006) Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry 45:6529–6540

  • Ryge TS, Doisy X, Ifrah D, Olsen JE, Hansen PR (2009) New indolicidin analogues with potent antibacterial activity. J Pept Res 64:171–185

  • Savoia D, Guerrini R, Marzola E, Salvadori S (2008) Synthesis and antimicrobial activity of dermaseptin S1 analogues. Biorg Med Chem 16:8205–8209

    Article  CAS  Google Scholar 

  • Schadich E, Cole ALJ, Mason D (2010) Comparative activity of Cecropin A and Polymyxin B against frog bacterial pathogens. Veterinaria 59:67–73

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  PubMed  Google Scholar 

  • Son DJ, Ha SJ, Song HS, Lim Y, Yun YP, Lee JW, Moon DC, Park YH, Park BS, Song MJ, Hong JT (2006) Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappa B and Akt activation and enhancement of apoptotic protein expression. J Pharmacol Exp Ther 317:627–634

  • Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K (2011) Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers-Basel 3:1512–1532

    Article  CAS  Google Scholar 

  • Staubitz P, Peschel A, Nieuwenhuizen WF, Otto M, Gotz F, Jung G, Jack RW (2001) Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J Pept Sci 7:552–564

    Article  CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395:48–52

    Article  CAS  PubMed  Google Scholar 

  • Ulvatne H, Haukland HH, Samuelsen O, Kramer O, Vorland LH (2002) Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J Antimicrob Chemother 50:461–467

  • Wang X, Zhu M, Yang G, Su C, Zhang A, Cao R, Chen P (2011) Expression of cecropin B in Pichia pastoris and its bioactivity in vitro. Exp Ther Med 2:655–660

  • Watkins RR, Papp-Wallace KM, Drawz SM, Bonomo RA (2013) Novel beta-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Front Microbiol 4:392

    Article  PubMed Central  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainin peptides and several analogs. Proc Natl Acad Sci USA 85:910–913

Download references

Acknowledgments

This study was supported by the Romanian Ministry of Research (national Grants No. PNII-123/2012 and PN-II-ID-PCCE-2011-2-0027). The authors gratefully express thanks to Nicoleta Moisoi which carefully revised the manuscript.

Conflict of interest

Mihaela Bacalum and Mihai Radu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Radu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacalum, M., Radu, M. Cationic Antimicrobial Peptides Cytotoxicity on Mammalian Cells: An Analysis Using Therapeutic Index Integrative Concept. Int J Pept Res Ther 21, 47–55 (2015). https://doi.org/10.1007/s10989-014-9430-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9430-z

Keywords

Navigation