Skip to main content

Advertisement

Log in

Anticancer Activities of Antimicrobial BmKn2 Peptides Against Oral and Colon Cancer Cells

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

There is considerable current interest in developing antimicrobial and anticancer agents with a new mode of action. The antimicrobial peptides are regarded as a potential solution for treating cancer cells. The antimicrobial effect of 6 synthetic peptides against 7 bacterial species was evaluated. The result showed that IsCT, BmKn2 and BMAP-28 exhibited broad range of action against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, methicillin resistant S. aureus DMST 20651, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumanii ATCC 19066, Escherichia coli ATCC 25922 and Salmonella typhi DMST 562 at minimal inhibitory concentrations (MIC) of 2.97–24.28 μM. Neither AMP induced significant hemolysis, or showed cytotoxic on dental pulp stem cells and smooth muscle cells at their MICs. In addition, BmKn2 inhibited growth of human oral squamous carcinoma HSC4 cells and human colon cancer SW620 cells with IC50 of 17.26 and 40 µM, respectively. Taken together, BmKn2 peptide from scorpion venom may offer a novel therapeutic strategy for development of cationic antimicrobial and anticancer peptides as potential new therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arpornsuwan T, Punjanon T (2006) Tumor cell-selective antiproliferative effect of the extract from Morinda citrifolia fruits. Phytother Res 20:515–517

    Article  PubMed  Google Scholar 

  • Ausbacher D, Svineng G, Hansen T, Strøm MB (2012) Anticancer mechanisms of action of two small amphipathic β(2,2)-amino acid derivatives derived from antimicrobial peptides. Biochim Biophys Acta 1818:2917–2925

    Article  PubMed  CAS  Google Scholar 

  • Benincasa M, Skerlavaj B, Gennaro R, Pellegrini A, Zanetti M (2003) In vitro and in vivo antimicrobial activity of two alpha-helical cathelicidin peptides and of their synthetic analogs. Peptides 24:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Dai C, Li Z, Fan Z, Song Y, Wu Y, Cao Z, Li W (2012) Antimicrobial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One 7:e40135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan YR, Gallo RL (1998) PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130Cas. J Biol Chem 273:28978e85

    Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiu D, Lubin B, Shohet SB (1979) Erythrocyte membrane lipid reorganization during the sickling process. Br J Haematol 41:223–234

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y, Cao Z, Li W (2008) Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother 52:3967–3972

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–150

    Article  PubMed  CAS  Google Scholar 

  • De Kroon AI, Soekarjo MW, De Gier J, De Kruijff B (1990) The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry 29:8229–8240

    Article  PubMed  Google Scholar 

  • Dobrzynska J, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z (2005) Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 276:113–119

    Article  PubMed  CAS  Google Scholar 

  • Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from Australian frogs. Biochim Biophys Acta 1788:1630–1638

    Article  PubMed  CAS  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. Rev Front Microbiol 4:294

    Google Scholar 

  • Gatti L, Zunino F (2005) Overview of tumor cell chemoresistance mechanisms. Methods Mol Med 111:127–148

    PubMed  CAS  Google Scholar 

  • Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24:2101–2102

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  PubMed  CAS  Google Scholar 

  • Gross S, Andra J (2012) Anticancer peptide NK-2 targets cell surface sulphated glycans rather than sialic acids. Biol Chem 393:817–827

    Article  PubMed  CAS  Google Scholar 

  • Guiliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:1–33

    Article  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamath L, Meydani A, Foss F, Kuliopulos A (2001) Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res 61:5933–5940

    PubMed  CAS  Google Scholar 

  • Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochim Biophys Acta 1778:1528–1536

    Article  PubMed  CAS  Google Scholar 

  • Koszałka P, Kamysz E, Wejda M, Kamysz W, Bigda J (2011) Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim Pol 58:111–117

    PubMed  Google Scholar 

  • Langfield RD, Scarano FJ, Heitzman ME, Kondo M, Hammond GB, Neto CC (2004) Use of a modified microplate bioassay method to investigate antimicrobial activity in the Peruvian medicinal plant Peperomia galioides. J Ethnopharmacol 94:279–281

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y (2004) Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun 323:712–719

    Article  PubMed  CAS  Google Scholar 

  • Leptihn S, Har JY, Wohland T, Ding JL (2010) Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides. Biochemistry 49:9161–9170

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Adamian L, Jackups R Jr (2005) The membrane–water interface region of membrane proteins: structural bias and the anti-snorkeling effect. Trends Biochem Sci 30:355–357

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Li J, Yu H, Xu X, Liang J, Tian Y, Ma D, Lin G, Huang G, Lai R (2006) Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides 27:3085–3091

    Article  PubMed  CAS  Google Scholar 

  • Makovitski A, Baram J, Shai Y (2008) Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: in vitro and in vivo activities, selfassembly to nanostructures, and a plausible mode of action. Biochemistry 47:10630–10636

    Article  Google Scholar 

  • Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antimicrobial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390:695–702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Papo N, Shai Y (2003) New lytic peptides based on the d, l-amhipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42:9346–9354

    Article  PubMed  CAS  Google Scholar 

  • Paredes-Gamero EJ, Martins MN, Cappabianco FA, Ide JS, Miranda A (2012) Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta 1820:1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Yi K-S, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  PubMed  CAS  Google Scholar 

  • Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 189:107–115

    Article  PubMed  CAS  Google Scholar 

  • Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, Zanetti M, Gennaro R, Bernardi P (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22:1926–1935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70 % accuracy. J Mol Biol 232:584–599

    Article  PubMed  CAS  Google Scholar 

  • Sapay N, Guermeur Y, Deleage G (2006) Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinform 7:255

    Article  Google Scholar 

  • Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271:28375–28381

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Fujimoto Y, Suzuki M, Suzuki Y, Ohtake T, Saito H et al (2001) PI3-kinase p85a is a target molecule of proline-rich antimicrobial peptide to suppress proliferation of ras-transformed cells. Jpn J Cancer Res 92:959–967

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Wang Y, Wang A, Song Y, Ma D, Yang H, Ma Y, Lai R (2010) Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis. Comp Biochem Physiol B 155:72–76

    Article  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997) Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36:6124–6132

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Yang H, Yu H, Li J, Lai R (2006) The mastoparanogen from wasp. Peptides 27:3053–3057

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H, Harashima H (2005) Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharma 303:1–7

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX (2004) Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 25:143–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank TU Research grant supported by Thammasat University for the financial support to this study. Thanks are also extended to Faculty of Science, Ramkhamhaeng University and Faculty of Dentist, Mahidol University for kind supports in providing SW620 cell line, oral cancer cell line and dental pulp stem cells.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerakul Arpornsuwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpornsuwan, T., Sriwai, W., Jaresitthikunchai, J. et al. Anticancer Activities of Antimicrobial BmKn2 Peptides Against Oral and Colon Cancer Cells. Int J Pept Res Ther 20, 501–509 (2014). https://doi.org/10.1007/s10989-014-9417-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9417-9

Keywords

Navigation