Skip to main content

Advertisement

Log in

Orally Administered Therapeutic Peptide Delivery: Enhanced Absorption Through the Small Intestine Using Permeation Enhancers

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Peptide therapeutics (PTs) is generally regarded as highly effective macromolecule therapeutics at very low concentrations. The main issues surrounding the administration of PTs is guaranteeing that they are bioavailable, reach the desired therapeutic index and distribute throughout the body effectively. The oral administration, a non-invasive route, of PTs is considered a major complication due to inadequate oral absorption through biological membranes such as the small intestine epithelium due to presystemic proteolytic enzymatic activity. PTs bioavailability is further diminished in the systemic circulation due to low stability in the plasma and rapid excretion from the body. Many alternative routes can be considered non-invasive such as transdermal and nasal routes, but this review focuses on the oral route, specifically the small intestine region of the gastrointestinal tract. Although this region has the highest density of proteolytic enzymes, it contains tight junctions which have the lowest trans-epithelial electrical resistance throughout the body; thus paracellular transport of these large PTs can be achieved more readily. The use of a natural polysaccharide polymer, such as trimethyl chitosan (TMC), which enhances the bioavailability of these PTs through the small intestine, will also be discussed in great detail. TMC has been considered because it could potentially solve many of the mechanistic and chemical problems associated with oral therapeutic peptide administration. The safety of orally administered PTs through the small intestinal epithelium employing a polymer such as TMC is also discussed as this is a significant issue for regulatory bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agyei D, Danquah MK (2001) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29:272–277

    Article  CAS  Google Scholar 

  • Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  PubMed  CAS  Google Scholar 

  • Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111:107–116

    Article  PubMed  CAS  Google Scholar 

  • Ammar HO, Salama HA, El-Nahhas SA, Elmotasem H (2008) Design and evaluation of chitosan films for transdermal delivery of glimepiride. Curr Drug Deliv 5:290–298

    Article  PubMed  CAS  Google Scholar 

  • Andreeva AY, Krause E, Müller E-C, Blasig IE, Utepbergenov DI (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276:38480–38486

    Article  PubMed  CAS  Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Flores-Maldinado C, Cereijido M, Matter K (2000) Multiple domains of occludin are involved in regulation of paracellular permeability. J Cell Biochem 78:85–96

    Article  PubMed  CAS  Google Scholar 

  • Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmcol 56:290–299

    Article  CAS  Google Scholar 

  • Bennett RG, Heimann DG, Hamel FG (2009) Degradation of relaxin family peptides by insulin-degrading enzyme. Ann N Y Acad Sci 1160:38–41

    Article  PubMed  CAS  Google Scholar 

  • Bernkop-Schnürch A, Krajicek ME (1998) Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J Control Release 50:215–223

    Article  PubMed  Google Scholar 

  • Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T (2007) Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune response in mice following nasal administration. J Control Release 121:168–175

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Blommaart FC, Swart E, van der Ghauharali-Vlugt K, Bijl N, Moe C, Place A, Aerts JMFG (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770–6778

    Article  PubMed  CAS  Google Scholar 

  • Boothby LA, Doering PL, Kipersztok S (2004) Bioidentical hormone therapy: a review. Menopause 11:356–367

    Article  PubMed  Google Scholar 

  • Brandner JM (2009) Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72:289–294

    Article  PubMed  CAS  Google Scholar 

  • Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–593

    Article  PubMed  CAS  Google Scholar 

  • Cafaggi S, Russo E, Stefani R, Parodi B, Caviglioli G, Sillo G, Bisio A, Aiello C, Viale M (2011) Preparation, characterisation, and preliminary antitumor activity evaluation of a novel nanoparticulate system based on a cisplatin-hyaluronate complex and N-trimethyl chitosan. Invest New Drugs 29:443–455

    Article  PubMed  CAS  Google Scholar 

  • Campion JM, Maricic MJ (2003) Osteoporosis in men. Am Fam Physician 67:1521–1526

    PubMed  Google Scholar 

  • Cevher E, Sensoy D, Taha MAM, Abramam A (2008) Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan. AAPS PharmSciTech 9:953–965

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-H, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Mol Biol Cell 13:1227–1237

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Zhang ZR, Huang Y (2007) Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm 336:166–173

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y (2008) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 249:226–233

    Article  CAS  Google Scholar 

  • Chen EYT, Yang N, Quinton PM (2010) A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol 299:L542–L549

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Lim L-Y (2008) Comparison of reversible and nonreversible aqueous-soluble lipidized conjugates of Salmon calcitonin. Mol Pharm 5:610–621

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Lim L-Y (2010) Deign, synthesis, characterisation and in vivo activity of a novel salmon calcitonin conjugate containing a novel PEG-lipid moiety. J Pharm Pharmacol 62:296–304

    Article  PubMed  CAS  Google Scholar 

  • Chervenak J (2009) Bioidentical hormones for maturing woman. Maturitas 64:86–89

    Article  PubMed  CAS  Google Scholar 

  • Citi S (1992) Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 117:169–178

    Article  PubMed  CAS  Google Scholar 

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85

    Article  PubMed  CAS  Google Scholar 

  • Copeman M, Matuz J, Leonard AJ, Pearson JP, Dettmar PW, Allen A (1994) The gastroduodenal mucus barrier and its role in protection against luminal pepsins: the effect of 16,16 dimethyl prostaglandin E2, carbopol-polyacrylate, sucralfate and bismuth subsalicylate. J Gastroenterol Hepatol 9:S55–S59

    Article  PubMed  Google Scholar 

  • Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, Citi S (1999) Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 147:1569–1582

    Google Scholar 

  • Davis SS, Illum L, Hinchcliffe M (2001) Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol 53:33–39

    Article  PubMed  CAS  Google Scholar 

  • de Britto D, Filho SPC, Assis OBG (2011) Role of the alkyl moiety and counter ions on the thermal stability of chitosan derivatives. J Appl Polym Sci 121:815–822

    Article  CAS  Google Scholar 

  • Decaffmeyer M, Thomas A, Brasser R (2008) Les medicaments peptidiques: mythe ou réalité? Biotechnol Agron Soc Environ 12:255–263

    Google Scholar 

  • Degim T, Celebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Des 13:99–177

    Article  PubMed  CAS  Google Scholar 

  • Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788:892–910

    Article  PubMed  CAS  Google Scholar 

  • Di Colo G, Burgalassi S, Zambito Y, Monti D, Chetoni P (2004) Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcoreneal permeation. J Pharm Sci 93:2851–2862

    Article  PubMed  CAS  Google Scholar 

  • Domard A, Rinaudo M, Terrassin C (1986) New methods for the quaternization of chitosan. Int J Biol Macromol 8:105–107

    Article  CAS  Google Scholar 

  • du Plessis LH, Lubbe J, Strauss T, Kotzé AF (2010) Enhancement of nasal and intestinal calcitonin delivery by the novel Pheroid™ fatty acid based delivery system, and by N-trimethyl chitosan chloride. Int J Pharm 385:181–186

    Article  PubMed  CAS  Google Scholar 

  • Fadda HM, Basit AW (2005) Dissolution of pH responsive formulations in media resembling intestinal fluids: bicarbonate versus phosphate buffers. J Drug Deliv Sci Technol 15:273–279

    CAS  Google Scholar 

  • Fadda H, Basit AW (2007) Drug solubility in human jejunal fluids and physiologically relevant media: relative importance of buffer composition and intestinal surfactants. AAPS J 9:T2033

    Google Scholar 

  • Fasano A (2008) Physiological, pathological, and therapeutic implication of zonulin-mediated intestinal barrier modulation: living on the edge of the wall. Am J Pathol 172:1243–1252

    Article  CAS  Google Scholar 

  • Fasano A, Uzzau S (1997) Modulation of intestinal tight junctions by zonula occludins toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 99:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper JB (1991) Vibrio cholera produces a second enterotoxin, which affects intestinal tight junctions. Proc Nat Acad Sci USA 88:5242–5246

    Article  PubMed  CAS  Google Scholar 

  • Fetih G, Habib F, Okada N, Fujita T, Attia M, Yamamoto A (2005) Nitric oxide donors can enhance the intestinal transport and absorption of insulin and [Asu1,7]-eel calcitonin in rats. J Control Release 106:287–297

    Google Scholar 

  • Fetih G, Habib F, Okada N, Fujita T, Attia M, Yamamoto A (2006) Colon-specific delivery and enhanced colonic absorption of [Asu1,7]-eel calcitonin using chitosan capsules containing various additives in rats. J Drug Target 14:165–172

    Google Scholar 

  • Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17–25

    Article  PubMed  CAS  Google Scholar 

  • Florea BI, Thanou M, Junginger HE, Borchard G (2006) Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation. J Control Release 110:353–361

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S (2000) Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476:258–261

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    Article  PubMed  CAS  Google Scholar 

  • Gåserød O, Jolliffe IG, Hampson FC, Dettmar PW, Skjåk-Braek G (1998) The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int J Pharm 175:237–246

    Article  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signalling pathways. Biochim Biophys Acta 1778:729–756

    Article  PubMed  CAS  Google Scholar 

  • Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. Clin Rev Allergy Immunol 124:3–20

    Article  CAS  Google Scholar 

  • Guichard G (2004) Du peptide à I’analogue peptidique: strategies de stabilisation de la conformation active, amelioration du profil pharmacocinétique (cyclisation, acides amines non naturels, mimes de repliement, modification du squelette); Du peptide naturel…au medicament (Atelier de Formation Inserm 150)

  • Guo X-X, He W, Wang X-Q, Hu X-M (2011) Preparation and efficacy and of tumor vascular-targeted doxorubicin cationic liposomes coated by N-trimethyl chitosan. J Appl Polym Sci 121:2149–2156

    Article  CAS  Google Scholar 

  • Guzmán F, Barberis S, Illanes A (2006) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10:279–314

    Google Scholar 

  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentration at tight junctions through its possible interactions with claudin-1 and junctional adhesion molecules. J Biol Chem 277:455–461

    Article  PubMed  CAS  Google Scholar 

  • Hammal JH, Stander M, Kotzé AF (2002) Effect of the degree of quarterization of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. Int J Pharm 232:235–242

    Article  Google Scholar 

  • Hammal JH, Schultz CM, Kotzé AF (2003) N-Trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Dev Ind Pharm 29:161–172

    Article  CAS  Google Scholar 

  • Hanna PC, Wieckowski EU, Mietzner TA, McClane BA (1992) Mapping of functional regions of clostridium perfringens type A enterotoxin. Infect Immun 60:2114–2210

    Google Scholar 

  • Hartl D, Hua He C, Koller B, Da Silva CA, Homer R, Lee CG, Elias JA (2008) Acidic mammalian chitinase is secreted via an ADAM17/epidermal growth factor receptor-dependent pathway and stimulates chemokine production by pulmonary epithelial cells. J Cell Biol 283:33472–33482

    CAS  Google Scholar 

  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MUGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hickey M, Davis SR, Sturdee DW (2005) Treatment of menopausal symptoms: what shall we do now? Lancet 366:409–411

    Article  PubMed  Google Scholar 

  • Hildebrand M (1994) Pharmacokinetics and drug development. Dtsch Apoth ZTG 134:23–31

    CAS  Google Scholar 

  • Hochman J, Artursson P (1994) Mechanisms of absorption enhancement and tight junction regulation. J Control Release 29:253–267

    Article  CAS  Google Scholar 

  • Hruby VJ (2002) Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov 1:847–858

    Article  PubMed  CAS  Google Scholar 

  • Hsiao AY (2011) 3D spheroid culture systems for metastatic prostate cancer dormancy studies and anti-cancer therapeutics development. Biomedical Engineering Events. http://www.bme.umich.edu/about/events.php?query=past. Accessed September 26, 2011

  • Hummel G, Reineke U, Reimer U (2006) Translating peptides into small molecules. Mol BioSyst 2:499–508

    Article  PubMed  CAS  Google Scholar 

  • Ibekwe VC, Fadda HM, Parsons GE, Basit AW (2006) A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic drug delivery. Int J Pharm Sci 308:52–60

    Article  CAS  Google Scholar 

  • Ibekwe VC, Fadda HM, McConnell EL, Khela MK, Evans DF, Basit AW (2008) Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release system. Pharm Res 25:1828–1835

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Jantratid E, Janssen N, Reppas C, Dressman JB (2008) Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 25:1663–1676

    Article  PubMed  CAS  Google Scholar 

  • Jintapattanakit A, Mao S, Kissel T, Junyaprasert VB (2008) Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur J Pharm Biopharm 70:563–571

    Article  PubMed  CAS  Google Scholar 

  • Jintapattanakit A, Junyaprasert VB, Kissel T (2009) The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 98:4818–4830

    Article  PubMed  CAS  Google Scholar 

  • Johnson L (2005) Asymmetry at the molecular level in biology. Eur Rev 2:77–95

    Article  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  PubMed  CAS  Google Scholar 

  • Kavimandan NJ, Peppas NA (2008) Confocal microscopic analysis of transport mechanisms of insulin across the cell monolayer. Int J Pharm 354:143–148

    Article  PubMed  CAS  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  PubMed  CAS  Google Scholar 

  • Kean T, Roth S, Thanou M (2005) Trimethylated chitosan as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    Article  PubMed  CAS  Google Scholar 

  • Kerss S, Allen A, Garner A (1982) A simple method for measuring the thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin Sci 63:187–195

    PubMed  CAS  Google Scholar 

  • Kondoh M, Masuyama A, Takahashi A, Asano N, Mizuguchi H, Koizumi N, Fujii M, Hayakawa T, Horiguchi Y, Watanbe Y (2005) A novel strategy for the enhancement of drug absorption using a claudin modulator. Mol Pharmacol 67:749–756

    Article  PubMed  CAS  Google Scholar 

  • Kondoh M, Yoshida T, Kakutani H, Yagi K (2008) Targeting tight junction proteins-significance for drug development. Drug Discov Today 13:180–186

    Article  PubMed  CAS  Google Scholar 

  • Kotzé AF, Thanou M, Lueβen, de Boer AG, Verhoef JC, Junginger HE (1999) Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur J Pharm Biopharm 47:269–274

    Article  PubMed  Google Scholar 

  • Ladner RC, Sato AK, Gorzelany J, De Souza M (2004) Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today 9:525–529

    Article  PubMed  CAS  Google Scholar 

  • Lennernäs H, Abrahamsson B (2005) The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol 57:273–285

    Article  PubMed  CAS  Google Scholar 

  • Lindmark T, Kimura Y, Artursson P (1998) Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther 284:362–369

    PubMed  CAS  Google Scholar 

  • Lindmark T, Nikkilä T, Artursson P (1995) Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 275:958–964

    Google Scholar 

  • Loffet A (2002) Peptide as drugs: is there a market? J Pept Sci 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • MacLennan AH (2008) Hormone replacement therapy: a 2008 perspective. Obstet Gynaecol Reprod Med 19:13–18

    Article  Google Scholar 

  • Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T (2005) Synthesis. Characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356

    Article  PubMed  CAS  Google Scholar 

  • Martins AF, Piali JF, Schuquel ITA, Rubira AF, Muniz EC (2011) Polyelectrolyte complexes of chitosan/heparin and N,N,N-trimethyl chitosan/heparin obtained at different pH: I. Preparation, characterization, and controlled release of heparin. Colloid Polym Sci 289:1133–1144

    Article  CAS  Google Scholar 

  • Masuyama A, Kondoh M, Seguchi H, Takahashi A, Harada M, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y (2005) Role of N-terminal amino acids in the absorption-enhancing effects of the C-terminal fragment of Clostridium perfringens enterotoxin. J Pharmacol Exp Ther 314:789–795

    Google Scholar 

  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of tight junction. J Cell Sci 109:2287–2298

    PubMed  CAS  Google Scholar 

  • McConnell EL, Fadda HM, Basit AW (2008) Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 364:213–226

    Article  PubMed  CAS  Google Scholar 

  • McGregor DP (2008) Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 8:616–619

    Article  PubMed  CAS  Google Scholar 

  • Meaney CM, O’Driscoll CM (2000) A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt: fatty acid micellar systems using the CaCo-2 cell culture model. Int J Pharm 207:21–30

    Article  PubMed  CAS  Google Scholar 

  • Millner RWJ, Lockhart AS, Bird H, Alexiou C (2009) A new hemostatic agent: initial life-saving experience with Celox (chitosan) in cardiothoracic surgery. Ann Thorac Surg 87:e13–e14

    Article  PubMed  Google Scholar 

  • Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery. Drug Discov Today 11:905–910

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20:1057–1079

    Article  PubMed  CAS  Google Scholar 

  • Muranishi S (1990) Absorption enhancers. Crit Rev Ther Drug Carrier Syst 7:1–33

    PubMed  CAS  Google Scholar 

  • Nusrat A, Brown GT, Tom J, Drake A, Bui TTT, Quan C, Mrsny RJ (2005) Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein occludin. Mol Biol Cell 16:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Oberle RL, Das H (1994) Variability in gastric pH and delayed gastric emptying in Yucatan miniature pigs. Pharm Res 11:592–594

    Article  PubMed  CAS  Google Scholar 

  • Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microbiol 58:977–987

    Article  PubMed  CAS  Google Scholar 

  • Paranjpe PV, Sinko PJ (2002) Overcoming paracellular tissue barriers for drug delivery. Pharm News 9:381–395

    CAS  Google Scholar 

  • Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of tight junctions. Biochim Biophys Acta 1778:646–659

    Article  PubMed  CAS  Google Scholar 

  • Pichereau C, Allary C (2005) Therapeutic peptides under the spotlight. EBR (Winter issue) 88–91

  • Polnok A, Borchard G, Verhoef JC, Sarisuta N, Junginger HE (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57:77–83

    Google Scholar 

  • Powell DW (1987) Ion and water transport in the intestine. In: Andreoli TE, Schultz SG (eds) Physiology of membrane disorders, 2nd edn. Plenum, New York, pp 559–596

    Google Scholar 

  • Quattrocchi E, Kourlas Helen (2004) Teriparatide: a review. Clin Ther 26:841–854

    Article  PubMed  CAS  Google Scholar 

  • Ranfeild J (2006) Center for devices and radiological health (CDRH)’s approval of Celox topical hemostatic granules as a medical device (K061079). Docstoc. http://www.docstoc.com/docs/100104805/K090780. Accessed 10 July 2010

  • Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts JMFG (1995) Purification and characterization of human chitotriosidase, a navel member of the chitinase family of proteins. J Biol Chem 270:2198–2202

    Article  PubMed  CAS  Google Scholar 

  • Roberts GAF (1992) Chitin chemistry. The MacMillan Press, London, pp 1–110, 274–315

  • Rubas W, Cromwell MEM, Shahrokh Z, Villagran J, Nguyen T-N, Wellton M, Nguyen T-N, Mrsny RJ (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 85:165–169

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Salama NN, Eddington ND, Fasano A (2006) Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 58:15–28

    Article  PubMed  CAS  Google Scholar 

  • Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Di Colo G, Caramella C (2005) Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of high molecular weight molecule. Int J Pharm 297:16–155

    Article  CAS  Google Scholar 

  • Sandzen B, Blom H, Dahlgren S (1988) Gastric mucus gel layer thickness measured by direct light microscopy. An experimental study in the rat. Scand J Gastroenterol 23:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642

    Article  PubMed  CAS  Google Scholar 

  • Sayin B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Senel S (2008) Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 363:139–148

    Article  PubMed  CAS  Google Scholar 

  • Schiller C, Frohlich CP, Geissman T, Siegmund W, Monnikes H, Hosten N, Weitschies W (2005) Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22:971–979

    Article  PubMed  CAS  Google Scholar 

  • Schipper NGM, Vårum KM, Artursson P (1996) Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res 13:1686–1692

    Article  PubMed  CAS  Google Scholar 

  • Schipper NGM, Vårum KM, Stenberg P, Ocklind G, Lennernas H, Artursson P (1999) Chitosans as absorption enhancers of poorly absorbable drugs 3: influence of mucus on absorption enhancement. Eur J Pharm Sci 8:335–343

    Article  PubMed  CAS  Google Scholar 

  • Serra L, Doménech J, Peppas N (2009) Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm 71:519–528

    Article  PubMed  CAS  Google Scholar 

  • Shah RB and Khan MA (2004) Regional permeability of salmon calcitonin in isolated rat gastrointestinal tracts: transport mechanism using Caco-2 cell monolayer. AAPS J 6:36–40

    Google Scholar 

  • Shao Z, Li Y, Chermak T, Mitra A.K. (1994) Cyclodextrins as Mucosal absorption promoters of insulin. II. Effects of β-cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharmaceut Res 11:1174–1179

    Google Scholar 

  • Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14:535–542

    Article  PubMed  CAS  Google Scholar 

  • Sheth P, Basuroy S, Li C, Naren AP, Rao RK (2003) Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 278:49239–49245

    Article  PubMed  CAS  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Prage M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  • Simonelli C (2002) Parathyroid hormone: a new treatment option for osteoporosis. Pharm Ther 27:410–413

    Google Scholar 

  • Smales C, Ellis M, Baumber R, Hussain N, Desmond H, Staddon JM (2003) Occludin phosphorylation: identification of an occludin kinase in brain and cell extracts as CK2. FEBS Lett 545:161–166

    Article  PubMed  CAS  Google Scholar 

  • Snoeck V, Huyghebaert N, Cox E, Vermeire A, Saunders J, Remon JP, Verschooten F, Goddeeris BM (2004) Gastrointestinal transit time of non-disintegrating radio-opaque pellets in suckling and recently weaned piglets. J Control Release 94:143–153

    Article  PubMed  CAS  Google Scholar 

  • Snyman D, Hamman JH, Kotzé JS, Rollings JE, Kotzé AF (2002) The relationship between the absolute molecular weight and the degree of quaternization of N-trimethyl chitosan chloride. Carbohydr Polym 50:145–150

    Article  CAS  Google Scholar 

  • Snyman D, Hamman JH, Kotze AF (2003) Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride. Drug Dev Ind Pharm 29:61–69

    Article  PubMed  CAS  Google Scholar 

  • Snyman D, Kotzé AF, Walls TH, Govender T, Lachmann G (2004) Conformational characterization of quaternized chitosan polymers. In: Proceedings of the international symposium on control release of bioactive materials, p 211

  • Soderholm JD, Oman H, Blomquist L, Veen J, Lindmark T, Olaison G (1998) Reversible increase in tight junction permeability to macromolecules in rat ileal mucosa in vitro by sodium caprate, a constituent of milk fat. Digest Dis Sci. 43:1547–1552

    Google Scholar 

  • Sogias IA, Khutoryanskiy VV, Williams AC (2010) Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys 211:426–433

    Article  CAS  Google Scholar 

  • Song K-H, Fasano A, Eddington ND (2008) Effect of the six-mer synthetic peptide (AT-1002) fragment of zonula occludens toxin on the intestinal absorption of cyclosporine A. Int J Pharm 351:8–14

    Google Scholar 

  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    Article  PubMed  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149

    Article  PubMed  CAS  Google Scholar 

  • Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotechnol 10:122–137

    Article  PubMed  CAS  Google Scholar 

  • Strugala V, Allen A, Dettmar PW, Pearson J (2003) Colonic mucin: methods of measuring mucus thickness. Proc Nutr Soc 62:237–243

    Article  PubMed  CAS  Google Scholar 

  • Szentkuti L, Lorenz K (1995) The thickness of the mucus layer in different segments of the rat intestine. Histochem J 27:466–472

    PubMed  CAS  Google Scholar 

  • Tavelin S, Hashimoto K, Malkinson J, Lazorova L, Toth I, Artursson P (2003) A new principle for tight junction modulation based on occludin peptides. Mol Pharm 64:1530–1540

    Article  CAS  Google Scholar 

  • Thanou MM, Verhoef JC, Romeijn SG, Nagelkerke JF, Merkus FW, Junginger HE (1999) Effects of N-trimethyl chitosan chloride, a novel absorption enhancer, on caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea. Int J Pharm 185:73–82

    Article  PubMed  CAS  Google Scholar 

  • Thanou M, Florea BI, Langemeÿer MWE, Verhoef JC, Junginger HE (2000a) N-trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm Res 17:27–31

    Article  PubMed  CAS  Google Scholar 

  • Thanou MM, Kotze AF, Scharringhausen T, Lueβen HL, De Boer AG, Verhoef JC, Junginger HE (2000b) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64:15–25

    Article  PubMed  CAS  Google Scholar 

  • Thanou M, Verhoef JC, Junginger HE (2001a) Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev 50:S91–S101

    Article  PubMed  CAS  Google Scholar 

  • Thanou M, Verhoef JC, Verheijden JHM, Junginger HE (2001b) Intestinal absorption of octreotide using trimethyl chitosan chloride: studies in pigs. Pharm Res 18:823–828

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Hayashi M, Awazu S (1994) Comparison of absorption-enhancing effect between sodium caprate and disodium ethylenediaminetetraacetate in Caco-2 cells. Biol Pharm Bull 17:753–755

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Hayashi M, Awazu S (1996) Absorption-enhancing mechanism of EDTA, caprate, and decanoylcaritine in Caco-2 cells. J Pharm Sci 85:608–611

    Article  PubMed  CAS  Google Scholar 

  • Tshala-Katumbay D (2010) Peptide-based treatment for neurodegenerative diseases. Sumobrain. http://www.sumobrain.com/patents/wipo/Peptide-based-treatment-neurodegenerative-diseases/WO2011066285.html. Accessed September 25, 2011

  • Van der Lubben IM, Verhoef JC, Fretz MM, Van O, Mesu I, Kersten G, Junginger HE (2002) Trimethyl chitosan chloride (TMC) as a novel excipient for oral and nasal immunisation against diphtheria. STP Pharma Sci 12:235–242

    Google Scholar 

  • Varum FJO, Veiga F, Sousa JO, Basit AW (2010) An investigation into the role of mucus thickness on mucoadhesion in the gastrointestinal tract of pig. Eur J Pharm Sci 40:335–341

    Article  PubMed  CAS  Google Scholar 

  • Verheul RJ, Amidi M, van Steenbergen MJ, van Riet E, Jiskoot W (2009) Influence of the degree of acetylation on enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 30:3129–3135

    Article  PubMed  CAS  Google Scholar 

  • Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C (2005) Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm 60:413–417

    Article  PubMed  CAS  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  PubMed  CAS  Google Scholar 

  • Vongchan P, Wutti-In Y, Sajomsang W, Gonil P, Kothan S, Linhardt RJ (2011) N,N,N-trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells. Carbohydr Polym 85:215–220

    Article  PubMed  CAS  Google Scholar 

  • Ward PD, Tippin TK, Thakker DR (2000) Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 3:346–358

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113:4435–4440

    Google Scholar 

  • Wong V, Gumbiner BM (1997) A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136:399–409

    Article  PubMed  CAS  Google Scholar 

  • Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug 11:61–95

    Google Scholar 

  • Woodley JF, Blanco-Mendez J, Kenworthy S (1994) Cyclodextrins inhibit peptide degradation by intestinal brush border but not luminal enzymes. Proc Control Release Soc 64–65

  • Xu T, Zhang N, Nichols HL, Shi D, Wen X (2007) Modification of nanostructured materials for biomedical applications. Mater Sci Eng C 27:579–594

    Article  CAS  Google Scholar 

  • Yamamoto A, Tatsumi H, Maruyama M, Uchiyama T, Okada N, Fujita T (2001) Modulation of intestinal permeability by nitric oxide donors: Implications in intestinal delivery of poorly absorbable drugs. J Pharmacol Exp Ther 296:84–90

    Google Scholar 

  • Yang YM, Hu W, Wang XD, Gu XS (2007) The controlled biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med 18:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:2003

    Article  CAS  Google Scholar 

  • Yeh T-H, Hsu L-W, Tseng MT, Lee P-L, Sonjae K, Ho Y-C, Sung H-W (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32:6164–6173

    PubMed  CAS  Google Scholar 

  • Yu AS, Enck AH, Lencer WI, Scheenberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xue C, Li Z, Zhang Y, Fu X (2006) Preparation of half-deacetylated chitosan by forced penetration and its properties. Carbohydr Polym 65:229–234

    Article  CAS  Google Scholar 

  • Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S, Kramer KJ (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304:1678–1682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The publication of this review is financed by the National Research Fund (NRF) of South Africa. The Tradenames of products used in this review are not endorsements by the authors or the NRF of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, V., Hibbins, A.R., Choonara, Y.E. et al. Orally Administered Therapeutic Peptide Delivery: Enhanced Absorption Through the Small Intestine Using Permeation Enhancers. Int J Pept Res Ther 18, 259–280 (2012). https://doi.org/10.1007/s10989-012-9299-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9299-7

Keywords

Navigation