Skip to main content
Log in

Binding and Uptake of RGD-Containing Ligands to Cellular α v β 3 Integrins

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The cyclic peptide, cRGDf[N(me)]V, binds to the α v β 3 integrin and can disrupt binding of the integrin to its natural ligands in the extracellular matrix. In this work, the ability of a water-soluble, fluorescently labeled variant of the RGD-containing peptide (cRGDfK-488) to bind to integrins on human umbilical vascular endothelial cells (HUVEC) and subsequently undergo endocytosis was characterized. This information was compared to the binding and uptake properties of an α v β 3 integrin-specific monoclonal antibody, LM609X. The specificity of the RGD-containing peptide is assessed by comparison with control peptide that does not bind to the α v β 3 integrin, cRADfK-488. Using a high purity construct, it is shown that the RGD ligand exhibits dissociation constants in the micromolar range whereas LM609X exhibits dissociation constants in the nanomolar range. However, the RGD ligand showed greater uptake following incubation at temperatures which permit endocytosis. A 7.4-fold increase in uptake of the RGD peptide was observed following a 1 h incubation with HUVEC at 37°C (an endocytosis permissive temperature), as compared to that at 4°C (an endocytosis prohibitive temperature). In contrast, only a 1.9-fold increase in cell-associated fluorescence was observed for similar incubations with LM609X. Results from fluorescence microscopy supports the notion that the RGD peptide is rapidly endocytosed at 37°C as compared to LM609X. These results are discussed with regard to previous work indicating that RGD ligands enter cells by integrin-independent pathways. These studies provide well-controlled measures of how RGD ligands stimulate endocytosis. This may be of considerable interest for intracellular delivery of ligand-associated drugs in anti-angiogenic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    PubMed  CAS  Google Scholar 

  • Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65:1536–1543

    PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Kuppuswamy D (2003) RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells. J Biol Chem 278:42214–42224

    Article  PubMed  CAS  Google Scholar 

  • Bednar B, Cunningham ME, Mcqueney PA, Egbertson MS, Askew BC, Rednar R, Hartman GD, Gould RJ (1997) Flow cytometric measurement of kinetic and equilibrium binding parameters of Arginine-Glycine-Aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets. Cytometry 28:58–65

    Article  PubMed  CAS  Google Scholar 

  • Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12:3942–3949

    Article  PubMed  CAS  Google Scholar 

  • Brassard DL, Maxwell E, Malkowski M, Nagabhushan TL, Kumar CC, Armstrong L (1999) Integrin alpha(v)beta(3)-mediated activation of apoptosis. Exp Cell Res 251:33–45

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Clark RAF, Cheresh DA (1994) Requirement of vascular integrin, avB3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  • Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH (2004) Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol Cancer Ther 3:1593–1604

    PubMed  CAS  Google Scholar 

  • Castel S, Pagan R, Mitjans F, Piulats J, Goodman S, Jonczyk A, Huber F, Vilaro S, Reina M (2001) RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest 81:1615–1626

    PubMed  CAS  Google Scholar 

  • Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Cheresh DA, Spiro RC (1987) Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 262:17703–17711

    PubMed  CAS  Google Scholar 

  • Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, Goodman SL, Kessler H (1999) N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 42:3033–3040

    Article  PubMed  CAS  Google Scholar 

  • Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP (2004) Liposomes modified with cyclic RGD peptide for tumor targeting. J Drug Target 12:257–264

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  • Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88:1924–1932

    Article  PubMed  CAS  Google Scholar 

  • Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin avB3 antagonists. J Am Chem Soc 118:7461–7472

    Article  CAS  Google Scholar 

  • Hieken TJ, Farolan M, Ronan SG, Shilkaitis A, Wild L, Das Gupta TK (1996) Beta3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res 63:169–173

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Lee HS (2004) Tumor targeting by doxorubicin-RGD–4C peptide conjugate in an orthotopic mouse hepatoma model. Int J Mol Med 14:529–535

    PubMed  CAS  Google Scholar 

  • Liapis H, Adler LM, Wick MR, Rader JS (1997) Expression of alpha(v)beta3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Hum Pathol 28:443–449

    Article  PubMed  CAS  Google Scholar 

  • Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L (2006a) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49:6087–6093

    Article  PubMed  CAS  Google Scholar 

  • Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006b) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222

    Article  PubMed  CAS  Google Scholar 

  • Pfaff M, Tangemann K, Muller B, Gurrath M, Muller G, Kessler H, Timpl R, Engel J (1994) Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 269:20233–20238

    PubMed  CAS  Google Scholar 

  • Puklin-Faucher E, Gao M, Schulten K, Vogel V (2006) How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J Cell Biol 175:349–360

    Article  PubMed  CAS  Google Scholar 

  • Renigunta A, Krasteva G, Konig P, Rose F, Klepetko W, Grimminger F, Seeger W, Hanze J (2006) DNA transfer into human lung cells is improved with Tat-RGD peptide by caveoli-mediated endocytosis. Bioconjug Chem 17:327–334

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  • Schiffelers RM, Koning GA, Ten Hagen TL, Fens MH, Schraa AJ, Janssen AP, Kok RJ, Molema G, Storm G (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122

    Article  PubMed  CAS  Google Scholar 

  • Schraa AJ, Kok RJ, Botter SM, Withoff S, Meijer DK, De Leij LF, Molema G (2004) RGD-modified anti-CD3 antibodies redirect cytolytic capacity of cytotoxic T lymphocytes toward alphavbeta3-expressing endothelial cells. Int J Cancer 112:279–285

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, Giorgio TD (2004) Quantitation and kinetics of CD51 surface receptor expression: implications for targeted delivery. Ann Biomed Eng 32:635–644

    Article  PubMed  CAS  Google Scholar 

  • Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 103:47–54

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cressman S, Fang N, Cullis PR, Chen DDY (2007) Capillary electrophoresis frontal analysis for characterization of avb3 integrin binding interactions. Anal Chem 80:3105–3111

    Article  Google Scholar 

  • Von Wallbrunn A, Holtke C, Zuhlsdorf M, Heindel W, Schafers M, Bremer C (2006) In vivo imaging of integrin alphanubeta(3) expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 34:745–754

    Article  Google Scholar 

  • Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen X (2005) microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718

    PubMed  CAS  Google Scholar 

  • Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, Zhang Q (2005) Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J Pharm Sci 94:1782–1793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Cheresh for the melanoma cell lines, Dr. Mark Okon for NMR expertise, Dr. Scott Covey for assistance with microscopy and Mr. Ian T. Dobson for his technical assistance. This work was supported by grants from the Canadian Institute for Health Research, the Natural Sciences and Engineering Research Council of Canada and Tekmira Pharmaceuticals Inc. S.C. and E.J.M. are funded by Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonya Cressman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cressman, S., Sun, Y., Maxwell, E.J. et al. Binding and Uptake of RGD-Containing Ligands to Cellular α v β 3 Integrins. Int J Pept Res Ther 15, 49–59 (2009). https://doi.org/10.1007/s10989-008-9163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9163-y

Keywords

Navigation