Skip to main content

Advertisement

Log in

Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to `functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolff, J.A., Malone, R.W. and Williams, P. et al.,Direct gene transfer into mouse muscle in vivo. Science, 247(4949 Pt 1) (1990) 1465.

    CAS  PubMed  Google Scholar 

  2. Li, S. and Huang, L.,Nonviral gene therapy:promises and challenges. Gene Ther., 7(1) (2002) 31.

    Google Scholar 

  3. Felgner, P.L.,Improvements in cationic liposomes for in vivogene transfer. Human Gene Ther., 7(15) (1996) 1791.

    CAS  Google Scholar 

  4. Donnelly, J.J., Ulmer, J.B. and Liu, M.A., DNA vaccines. Life Sci., 60(3) (1997) 163.

    CAS  Google Scholar 

  5. Felgner, P.L., Zelphati, O. and Liang, X.,Advances in synthetic gene delivery system technology. In: T. Friedman (Ed.) The Development of human gene therapy. Cold Springs Harbor Laboratory Press, New York, U.S.A.,1999.

    Google Scholar 

  6. Felgner, P.L., Gadek, T.R., Holm, M. et al.,lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 84(21) (1987) 7413.

    CAS  PubMed  Google Scholar 

  7. Felgner, J.H., Kumar, R., Sridhar, C.N. et al.,Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem., 269(4) (1994) 2550.

    CAS  PubMed  Google Scholar 

  8. Boussif, O., Lezoualc'h, F., Zanta, M.A. et al.,A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 92(16) (1995) 7297.

    CAS  PubMed  Google Scholar 

  9. Gao, X. and Huang, L., Cationic liposome-mediated gene transfer. Gene Ther., 2 (1995) 710.

    CAS  PubMed  Google Scholar 

  10. Haensler, J. and Szoka Jr., F.C., Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem., 4(5) (1993) 372.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y.P., Sekirov, L., Saravolac, E.G. et al.,Stabilized plasmid-lipid particles for regional gene therapy: Formulation and transfection properties. Gene Ther., 6 (1999) 1438.

    CAS  PubMed  Google Scholar 

  12. Lewis, J.G., Lin, K.Y., Kothavale, A. et al.,A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA, 93(8) (1996) 3176.

    CAS  PubMed  Google Scholar 

  13. Hong, K., Zheng, W., Baker, A. et al.,Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for ef-ficient in vivogene delivery. FEBS Lett., 400(2) (1997) 233.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, X. and Huang, L., Potentiation of cationic liposomemediated gene delivery by polycations. Biochemistry, 35(3) (1996) 1027.

    Article  CAS  PubMed  Google Scholar 

  15. Fritz, J.D., Herweijer, H., Zhang, G. et al.,Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum. Gene Ther., 7(12) (1996) 1395.

    CAS  PubMed  Google Scholar 

  16. Wagner, E., Cotten, M., Mechtler, K. et al.,DNA-binding transferrin conjugates as functional gene-delivery agents: Synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. Bioconjug. Chem., 2(4) (1991) 226.

    Article  CAS  PubMed  Google Scholar 

  17. Sosnowski, B.A., Gonzalez, A.M., Chandler, L.A. et al., Targeting DNA to cells with basic fibroblast growth factor (FGF2). J. Biol. Chem., 271 (1996) 33647.

    CAS  PubMed  Google Scholar 

  18. Lee, R.J. and Huang, L., Folate-targeted, anionic liposomeentrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem., 271(14) (1996) 8481.

    CAS  PubMed  Google Scholar 

  19. Wu, G.Y. and Wu, C.H., Receptor-mediated in vitrogene transformation by a soluble DNA carrier system. J. Biol. Chem., 262 (1987) 4429.

    CAS  PubMed  Google Scholar 

  20. Erbacher, P., Bousser, M.-T., Raimond, J. et al.,Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Human Gene Ther., 7 (1996) 721.

    CAS  Google Scholar 

  21. Liang, X., Hartikka, J., Sukhu, L. et al.,Novel, high expressing and antibiotic-controlled plasmid vectors designed for use in gene therapy. Gene Ther., 3(4) (1996) 350.

    CAS  PubMed  Google Scholar 

  22. Hartikka, J., Sawdey, M., Cornefert-Jensen, F. et al.,An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther., 7(10) (1996) 1205.

    CAS  PubMed  Google Scholar 

  23. Doll, R.F., Crandall, J.E., Dyer, C.A. et al.,Comparison of promoter strengths on gene delivery into mammalian brain cells using AAV vectors. Gene Ther., 3(5) (1996) 437.

    CAS  PubMed  Google Scholar 

  24. Moll, T., Czyz, M., Holzmuller, H. et al.,Regulation of the tissue factor promoter in endothelial cells. Binding of NF kappa B-, AP-1-, and Sp1-like transcription factors. J. Biol. Chem. 270(8) (1995) 3849.

    CAS  PubMed  Google Scholar 

  25. Zelphati, O., Liang, X., Nguyen, C. et al.,PNA-Dependent Gene Chemistry: Stable Coupling of Peptides and Oligonucleotides to Plasmid DNA. Biotechniques, 28(2) (2000) 304.

    CAS  PubMed  Google Scholar 

  26. Zelphati, O., Liang, X., Hobart, P. et al.,Gene chemistry: Functionally and conformationally intact fluorescent plasmid DNA. Hum. Gene Ther., 10(1) (1999) 15.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen, P.E., Egholm, M., Berg, R.H. et al.,Sequenceselective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254 (1991) 1497.

    CAS  PubMed  Google Scholar 

  28. Egholm, M., Buchardt, O., Christensen, L. et al.,PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick Hydrogen bonding rules. Nature, 365 (1993) 566.

    Article  CAS  PubMed  Google Scholar 

  29. Demidov, V.V., Yavnilovich, M.V., Belotserkovskii, B.P. et al., Kinetics and mechanism of polyamide ('peptide') nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. USA, 92 (1995) 2637.

    CAS  PubMed  Google Scholar 

  30. Nielsen, P.E., Egholm, M. and Buchardt, O., Peptide Nucleic Acid (PNA). A DNA mimic with a peptide backbone. Bioconj. Chem., 5(1) (1994) 3.

    CAS  Google Scholar 

  31. Nielsen, P., Egholm, M. and Buchardt, O.,Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene, 149 (1994) 139.

    Article  CAS  PubMed  Google Scholar 

  32. Egholm, M., Nielsen, P., Buchardt, O. et al.,Recognition of guanine and adenine in DNA by cytosine and thymine con321 taining peptide nucleic acids. J. Am. Chem. Soc., 114 (1992) 9677.

    CAS  Google Scholar 

  33. Egholm, M., Buchardt, O., Nielsen, P. et al.,Peptide Nucleic Acids (PNA): A novel approach to sequence-selective recognition of double-stranded DNA. In: R. Epton (Ed.) Innovation and perspectives in solid phase synthesis – Peptides, polypeptides and oligonucleotides. Intercept Ltd., Andover, England, 1992,325.

    Google Scholar 

  34. Cherny, D.Y., Belotserkovskii, B.P., Frank-Kamenetskii, M.D. et al.,DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc. Natl. Acad. Sci. USA, 90 (1993) 1667.

    CAS  PubMed  Google Scholar 

  35. Almarsson, O., Bruice, T.C., Kerr, J. et al.,Molecular mechanics calculations of the structures of polyamide nucleic acid DNA duplexes and triple helical hybrids. Proc. Natl. Acad. Sci. USA, 90 (1993) 7518.

    CAS  PubMed  Google Scholar 

  36. Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D. et al., Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharm., 48 (1994) 1310.

    Article  CAS  PubMed  Google Scholar 

  37. Hanvey, J.C., Peffer, N.J., Bisi, J.E. et al.,Antisense and antigene properties of peptide nucleic acids. Science, 258 (1992) 1481.

    CAS  PubMed  Google Scholar 

  38. Norton, J.C.,Mieczyslaw, A.P.,Woodring, E.W. et al.,Inhibition of human telomerase activity by peptide nucleic acids.Nat. Biotechnol., 14 (1996) 615.

    Article  CAS  PubMed  Google Scholar 

  39. Good, L. and Nielsen, P.E., Antisense inhibition of gene expression in bacteria by PNA targeted antisense to mRNA. Nat. Biotechnol., 16 (April) (1998) 355.

    Google Scholar 

  40. Good, L. and Nielsen, P.E., Inhibition of translational and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. USA, 95(5) (1998) 2073.

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, R.W., Chinnery, P.F., Turnbull, D.M. et al.,Selective inhibition of mutant mitochondrial DNA replication in vitroby peptide nucleic acids. Nature Genet., 15 (1997) 212.

    Article  CAS  PubMed  Google Scholar 

  42. Hirschman, S.Z. and Chen, C.W., Peptide nucleic acids stimulate gamma interferon and inhibit the replication of the human immunodeficiency virus. J. Investig. Med., 44(6) (1996) 347.

    CAS  PubMed  Google Scholar 

  43. Mollegaard, N.E., Buchardt, O., Egholm, M. et al.,Peptide nucleic acid DNA strand displacement loops as artificial transcription promoters. Proc. Natl. Acad. Sci. USA, 91 (1994) 3892.

    CAS  PubMed  Google Scholar 

  44. Demidov, V., Frank-Kamenetskii, M.D., Egholm, M. et al., Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucl. Acids Res., 21 (1993) 2103.

    CAS  PubMed  Google Scholar 

  45. Cherny, D.I., Fourcade, A., Svinarchuk, F. et al.,Analysis of various sequence-specific triplexes by electron and atomic force microscopes. Biophys. J., 74 (1998) 1015.

    CAS  PubMed  Google Scholar 

  46. Egholm, M., Christensen, L., Dueholm, K.L. et al.,Ef-ficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucl. Acids Res., 23 (1995) 217.

    CAS  PubMed  Google Scholar 

  47. Liang, X., Zelphati, O., Nguyen, C. et al.,Plasmid labeling using PNA. In: P. Egholm (Ed.) Peptide nucleic acids: Protocols and applications. Horizon Scientific Press, Norfolk, U.K.,1999.

    Google Scholar 

  48. Dowty, M.E., Williams, P., Zhang, G. et al.,Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc. Natl. Acad. Sci. USA, 92 (1995) 4572.

    CAS  PubMed  Google Scholar 

  49. Zabner, J., Fasbender, A.J., Moninger, T. et al.,Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem., 270(32) (1995) 18997.

    CAS  PubMed  Google Scholar 

  50. Gussoni, E., Wang, Y., Fraefel, C. et al.,A method to codetect introduced genes and their products in gene therapy protocols. Nat. Biotechnol., 14 (1996) 1012.

    Article  CAS  PubMed  Google Scholar 

  51. Dean, D.A.,Import of plasmid DNA into the nucleus is sequence specific. Exp. Cell Res., 230 (1997) 293.

    Article  CAS  PubMed  Google Scholar 

  52. Godbey, W.T., Wu, K.K. and Mikos, A.G., Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA, 96(9) (1999) 5177.

    Article  CAS  PubMed  Google Scholar 

  53. Puls, R.L. and Minchin, R.F.,Gene transfer and expression of a non-viral polycation-based vector in CD4+ cells. Gene Ther., 6 (1999) 1774.

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, G.L., Dean, B.S., Wang, G. et al.,Nuclear Import of plasmid DNA in digitonin-permeabilized cells requires both cytoplasmic factors and specific DNA sequences. J. Biol. Chem., 274(31) (1999) 22025.

    CAS  PubMed  Google Scholar 

  55. Dupuis, M., Denis-Mize, K., Woo, C. et al.,Distribution of DNA Vaccines Determines Their Immunogenicity After Intramuscular Injection in Mice. J. Immunol., 165(5) (2000) 2850.

    CAS  PubMed  Google Scholar 

  56. Lollo, C.P., Banaszczyk, M.G. and Chiou, H.C., Obstacles and advances in non-viral gene delivery. Curr. Opin. Mol. Ther., 2(2) (2000) 136.

    CAS  PubMed  Google Scholar 

  57. Schatzlein, A.G., Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs, 12(4) (2001) 275.

    Article  CAS  PubMed  Google Scholar 

  58. Mahato, R.I., Smith, L.C. and Rolland, A., Pharmaceutical perspectives of nonviral gene therapy. Adv. Genet., 41 (1999) 95.

    CAS  PubMed  Google Scholar 

  59. Zelphati, O. and Szoka Jr., F.C., Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res., 13 (1996) 1367.

    Article  CAS  PubMed  Google Scholar 

  60. Zelphati, O. and Szoka Jr., F.C., Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA, 93(21) (1996) 11493.

    Article  CAS  PubMed  Google Scholar 

  61. Zelphati, O., Uyechi, L., Baron, L. et al.,Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta, 1390 (1998) 119.

    CAS  PubMed  Google Scholar 

  62. Zhou, X. and Huang, L., DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action. Biochim. Biophys. Acta, 1189(2) (1994) 195.

    CAS  PubMed  Google Scholar 

  63. Xu, Y. and Szoka Jr., F.C., Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 35(18) (1996) 5616.

    Article  CAS  PubMed  Google Scholar 

  64. Labat-Moleur, F., Steffan, A.M., Brisson, C. et al.,An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther., 3(11) (1996) 1010.

    CAS  PubMed  Google Scholar 

  65. Fasbender, A., Zabner, J., Zeiher, B.G. et al.,A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther., 4(11) (1997) 1173.

    Article  CAS  PubMed  Google Scholar 

  66. El Ouahabi, A., Thiry, M., Pector, V. et al.,The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett., 414 (1997) 187.

    Article  CAS  PubMed  Google Scholar 

  67. Mislick, K.A. and Baldeschwieler, J.D., Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 93 (1996) 12349.

    Article  CAS  PubMed  Google Scholar 

  68. Barron, L.G., Meyer, K.B. and Szoka Jr., F.C., Effects of complement depletion on the pharmacokinetics and gene delivery mediated by cationic lipid-DNA complexes. Hum. Gene Ther., 9(3) (1998) 315.

    CAS  PubMed  Google Scholar 

  69. Pollard, H., Remy, J.S., Loussouarn, G. et al.,Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem., 273(13) (1998) 7507.

    Article  CAS  PubMed  Google Scholar 

  70. Tseng, W.C., Haselton, F.R. and Giorgio, T.D., Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem., 272 (1997) 25641.

    Article  CAS  PubMed  Google Scholar 

  71. Fenske, D.B., McLachlan, I. and Cullis, P.R., Longcirculating vectors for the systemic delivery of genes. Curr. Opin. Mol. Ther., 3(2) (2001) 153.

    CAS  PubMed  Google Scholar 

  72. Wagner, E., Plank, C., Zatloukal, K. et al.,Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: Toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA, 89(17) (1992) 7934.

    CAS  PubMed  Google Scholar 

  73. Plank, C., Oberhauser, B., Mechtler, K. et al.,The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 269(17) (1994) 12918.

    CAS  PubMed  Google Scholar 

  74. Wyman, T.B., Nicol, F., Zelphati, O. et al.,Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36(10) (1997) 3008.

    Article  CAS  PubMed  Google Scholar 

  75. Benns, J.M., Choi, J.S., Mahato, R.I. et al.,pHsensitive cationic polymer gene delivery vehicle: N-Acpoly( L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjugate Chem., 11(5) (2000) 637.

    Article  CAS  Google Scholar 

  76. Duguid, J.G., Li, C., Shi, M. et al.,A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Biophys. J., 74(6) (1998) 2802.

    CAS  PubMed  Google Scholar 

  77. Legendre, J.Y. and Szoka Jr., F.C., Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA, 90(3) (1993) 893.

    CAS  PubMed  Google Scholar 

  78. Ludtke, J.J., Zhang, G., Sebestyen, M.G. et al.,A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J. Cell Sci., 112 (1999) 2033.

    CAS  PubMed  Google Scholar 

  79. Sebestyen, M.G., Ludtke, J.J., Bassik, M.C. et al.,DNA vector chemistry: The covalent attachment of signal peptides to plasmid DNA. Nat. Biotechnol., 16 (1998) 80.

    CAS  PubMed  Google Scholar 

  80. Zanta, M.A., Belguise-Valladier, P. and Behr, J.P.,Gene delivery: A single nuclear localization signal peptide is suffi-cient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA, 96 (1999) 91.

    Article  CAS  PubMed  Google Scholar 

  81. Kaneda, Y., Iwai, K. and Uchida, T. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science, 243 (1989) 375.

    CAS  PubMed  Google Scholar 

  82. Collas, P. and Alestrom, P., Nuclear localization signals: A driving force for nuclear transport of plasmid DNA in Zebrafish. Biochem. Cell. Biol., 75(5) (1997) 633.

    Article  CAS  PubMed  Google Scholar 

  83. Chan, C.K., Hubner, S., Hu, W. et al.,Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: Implications for nonviral DNA delivery. Gene Ther., 5 (1998) 1204.

    Article  CAS  PubMed  Google Scholar 

  84. Subramanian, A., Ranganathan, P. and Diamond, S.L., Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol., 17 (1999) 873.

    Article  CAS  PubMed  Google Scholar 

  85. Murray, K.D., Etheridge, C.J., Shah, S.I. et al.,Enhanced cationic liposome-mediated transfection using the DNAbinding peptide mu (mu) from the adenovirus core. Gene Ther., 8 (2001) 453.

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz, B., Ivanov, M.A., Pitard, B. et al.,Synthetic DNAcompacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitroand in vivo. Gene Ther., 6 (1999) 282.

    Article  CAS  PubMed  Google Scholar 

  87. Pardridge, W.M., Boado, R.J. and Kang, Y.-S., Vectormediated delivery of a polyamide ('peptide') nucleic acid analogue through the blood-brain barrier in vivo. Proc. Natl. Acad. Sci. USA, 92 (1995) 5592.

    CAS  PubMed  Google Scholar 

  88. Pooga, M., Soomets, U., Hallbrink, M. et al.,Cell penetrating PNA constructs reulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol., (1998) 857.

  89. Brugidou, J., Legrand, C., Mery, I. et al.,The retro-inverso form of a homeobox-derived short peptide is rapidly internalised by cultured neurones: A new basis for an efficient intracellular delivery system. Biochem. Biophys. Res. Commun., 214 (1995) 685.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, X., Simmons, C.G. and Corey, D.R., Liver cell specific targeting of peptide nucleic acid oligomers. Bioorg. Med. Chem. Lett., 11 (2001) 1269.

    CAS  PubMed  Google Scholar 

  91. Basu, S. and Wickstrom, E., Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake.Bioconjugate Chem., 8 (1997) 481.

    Article  CAS  Google Scholar 

  92. Lasic, D.D., Liposomes from physics to applications. Elsevier, Amsterdam, 1993.

    Google Scholar 

  93. Suzuki, H., Zelphati, O., Hildebrand, G. et al.,CD4 and CD7 molecules as targets for drug delivery from antibody bearing liposomes. Exp. Cell Res., 193(1) (1991) 112.

    Article  CAS  PubMed  Google Scholar 

  94. Zelphati, O., Imbach, J.-L., Signoret, N. et al.,Antisense oligonucleotides in solution or encapsulated in immunoliposomes inhibit replication of HIV-1 by several different mechanisms. Nucl. Acids Res., 22 (1994) 4307.

    CAS  PubMed  Google Scholar 

  95. Zelphati, O. and Szoka Jr., F.C. Liposomes as a carrier for intracellular delivery of antisense oligonucleotides: A real or magic bullet? J. Contr. Release, 41 (1996) 99.

    CAS  Google Scholar 

  96. Machy, P., Lewis, F., McMillian, L. et al.,Gene transfer from targeted liposomes to specific lymphoid cells by electroporation. Proc. Natl. Acad. Sci. USA, 85 (1988) 8027.

    CAS  PubMed  Google Scholar 

  97. Kao, G.Y., Change, L.J. and Allen, T.M., Use of targeted cationic liposomes in enhanced DNA delivery to cancer cells. Cancer Gene Ther., 3(4) (1996) 250.

    CAS  PubMed  Google Scholar 

  98. Kircheis, R., Kichler, A., Wallner, G. et al.,Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther., 4 (1997) 409.

    Article  CAS  PubMed  Google Scholar 

  99. Foster, B.J. and Kern, J.A., HER2-Targeted Gene Transfer. Human Gene Ther., 8 (1997) 719.

    CAS  Google Scholar 

  100. Poncet, P., Panczak, A., Goupy, C. et al.,Antifection: An antibody-mediated method to introduce genes into lymphoid cells in vitroand in vivo. Gene Ther., 3 (1996) 731.

    CAS  PubMed  Google Scholar 

  101. Feero, W.G., Li, S., Rosenblatt, J.D. et al.,Selection and use of ligands for receptor-mediated gene delivery to myogenic cells. Gene Ther., 4 (1997) 664.

    Article  CAS  PubMed  Google Scholar 

  102. Perales, J.C., Ferkol, T., Beegen, H. et al.,Gene transfer in vivo: Sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA, 91 (1994) 4086.

    CAS  PubMed  Google Scholar 

  103. Wagner, E., Curiel, D. and Cotten, M., Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv. Drug Deliv. Rev., 14 (1993) 113.

    Google Scholar 

  104. Miller, N. and Vile, R., Targeted vectors for gene therapy. FASEB J., 9 (1995) 190.

    CAS  PubMed  Google Scholar 

  105. Hart, S.L., Collins, L., Gustafsson, K. et al.,Integrinmediated transfection with peptides containing arginineglycine-aspartic acid domains. Gene Ther., 4 (1997) 1225.

    Article  CAS  PubMed  Google Scholar 

  106. Kollen, W.J.T., Midoux, P., Erbacher, P. et al.,Gluconoylated and glycosylated polylisines as vectors for gene transfer into cystic fibrosis airway epithelial cells. Hum. Gene Ther., 7 (1996) 1577.

    CAS  PubMed  Google Scholar 

  107. Liang, K.W., Hoffman, E.P. and Huang, L.,Targeted delivery of plasmid DNA to myogenic cells via transferrin-conjugated peptide nucleic acid. Mol. Ther., 1(3) (2000) 236.

    Article  CAS  PubMed  Google Scholar 

  108. Joliot, A., Pernelle, C., Deagostini-Bazin, H. et al.,Antennapedia homeobox peptide regulates neural mosphogenesis. Proc. Natl. Acad. Sci. USA, 88 (1991) 1864.

    CAS  PubMed  Google Scholar 

  109. Eliott, G. and O'Hare, P., Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88 (1997) 223.

    Google Scholar 

  110. Frankel, A.D. and Pabo, C.O. Cellular Uptake of the Tat Protein from Human Immunodeficiency Virus. Cell, 55 (1988) 1189.

    Article  CAS  PubMed  Google Scholar 

  111. Mann, D.A. and Frankel, A.D., Endocytosis and targeting of exogenous HIV-1 Tat. Embo J., 10 (1991) 1733.

    CAS  PubMed  Google Scholar 

  112. Schwarze, S.R., Ho, A., Vocero-Akbani, A. et al., In vivoprotein transduction: Delivery of a biologically active protein into the mouse. Science, 285(5433) (1999) 1569.

    Article  CAS  PubMed  Google Scholar 

  113. Fawell, S., Seery, J., Daikh, Y. et al.,Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA, 91 (1994) 664.

    CAS  PubMed  Google Scholar 

  114. Vocero-Akbani, A.M., Heyden, N.V., Lissy, N.A. et al., Killing HIV-infected cells by transduction with an HIVprotease-activated caspase-3 protein. Nat. Med., 5 (1999) 29.

    CAS  PubMed  Google Scholar 

  115. Perez, F., Joliot, A.H., Bloch-Gallego, E. et al.,Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J. Cell Sci., 102 (1992) 717.

    CAS  PubMed  Google Scholar 

  116. Derossi, D., Joliot, A.H., Chassaing, G. et al.,The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 269 (1994) 10444.

    CAS  PubMed  Google Scholar 

  117. Mi, Z., Mai, J., Lu, X. et al.,Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitroand in vivo. Mol. Ther., 2(4) (2000) 339.

    Article  CAS  PubMed  Google Scholar 

  118. Eguchi, A., Akuta, T., Okuyama, H. et al.,Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem., 276 (2001) 26204.

    CAS  PubMed  Google Scholar 

  119. Lewin, M., Carlesso, N., Tung, C.H. et al.,Tat peptidederivatized magnetic nanoparticles allow in vivotracking and recovery of progenitor cells. Nat. Biotechnol., 18 (2000) 410.

    CAS  PubMed  Google Scholar 

  120. Vives, E., Brodin, P. and Lebleu, B.A., Truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 272 (1997) 16010.

    Article  CAS  PubMed  Google Scholar 

  121. Rojas, M., Donahue, J.P., Tan, Z. et al.,Genetic engineering of proteins with cell membrane permeability. Nat. Biotechnol., 16(4) (1998) 370.

    Article  CAS  PubMed  Google Scholar 

  122. Ciolina, C., Byk, G., Blanche, V. et al.,Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug. Chem., 10 (1999) 49.

    Article  CAS  PubMed  Google Scholar 

  123. Branden, L.J., Mohamed, A.J. and Smith, C.I., A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol., 17(8) (1999) 784.

    CAS  PubMed  Google Scholar 

  124. Wang, G., Xu, X., Pace, B. et al.,Peptide nucleic acid (PNA) binding-mediated induction of human [gamma]-globin gene expression. Nucl. Acids Res., 27(13) (1999) 2806.

    Article  CAS  PubMed  Google Scholar 

  125. Courey, A.J. and Tjian, R., Analysis of Sp1 in vivoreveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell, 55 (1988) 887.

    Article  CAS  PubMed  Google Scholar 

  126. Seipel, K., Georgiev, O. and Schaffner, W., Different activation domains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. Embo J., 11 (1992) 4961.

    CAS  PubMed  Google Scholar 

  127. Vestweber, D. and Schatz, G., DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature, 338 (1989) 170.

    Article  CAS  PubMed  Google Scholar 

  128. Chinnery, P.F., Taylor, R.W., Diekert, K. et al.,Peptide nucleic acid delivery to human mitochondria. Gene Ther., 6 (1999) 1919.

    Article  CAS  PubMed  Google Scholar 

  129. Sato, Y., Roman, M., Tighe, H. et al.,Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science, 273(5273) (1996) 352.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelphati, O., Felgner, J., Wang, Y. et al. Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. Int J Pept Res Ther 10, 309–323 (2003). https://doi.org/10.1007/s10989-004-4906-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-4906-x

Keywords

Navigation