Skip to main content
Log in

Confidence bands for the difference between two median survival times as a function of covariates

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In this paper, the estimation of the difference between two median survival times is considered when two treatment groups of right-censored data and the associated covariates are available. To identify the possible range of covariates over which the two treatments would produce different median survival times, two confidence bands for the difference as a function of the covariates are proposed under the stratified and treatment-specific Cox models, respectively. The results of a simulation study indicate that the latter generally maintains its confidence level and the former holds its confidence level and preserves a narrower width when the two treatments satisfy the stratified Cox model. An application of the proposed confidence bands is finally illustrated with a data set in a two-arm lung cancer study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  MATH  Google Scholar 

  • Billingsley P (1999) Convergence of probability measures. Wiley, New York

    Book  MATH  Google Scholar 

  • Breslow NE (1972) Contribution to the discussion of “regression models and life tables” by D. R. Cox. J R Stat Soc B 34:216–217

    MathSciNet  Google Scholar 

  • Breslow NE (1974) Covariance analysis of censored survival data. Biometrics 30:89–100

    Article  Google Scholar 

  • Brookmeyer R, Crowley J (1982) A confidence interval for the median survival time. Biometrics 38:29–41

    Article  MATH  Google Scholar 

  • Burr D, Doss H (1993) Confidence bands for the median survival time as a function of the covariates in the Cox model. J Am Stat Assoc 88:1330–1340

    Article  MATH  MathSciNet  Google Scholar 

  • Chen YI, Chang YM (2007) Covariates-dependent confidence intervals for the difference or ratio of two median survival times. Stat Med 26:2203–2213

    Article  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34:187–220

    MATH  Google Scholar 

  • Doss H, Gill RD (1992) An elementary approach to weak convergence for quantile process, with applications to censored survival data. J Am Stat Assoc 87:869–877

    Article  MATH  MathSciNet  Google Scholar 

  • Grambsch P, Therneau T (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526

    Article  MATH  MathSciNet  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MATH  MathSciNet  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data, 2nd edn. Springer, New York

    Google Scholar 

  • Ramlau-Hansen H (1983) Smoothing counting process intensities by mean of kernel functions. Ann Stat 11:453–466

    Article  MATH  MathSciNet  Google Scholar 

  • Su JQ, Wei LJ (1993) Nonparametric estimation for the difference or ratio of median failure times. Biometrics 49:603–607

    Article  MathSciNet  Google Scholar 

  • Wang JL, Hettmansperger TP (1990) Two-sample inference for median survival times based on one-sample procedures for censored survival data. J Am Stat Assoc 85:529–536

    Article  MATH  MathSciNet  Google Scholar 

  • Wei G, Schaubel DE (2008) Estimating cumulative treatment effects in the presence of nonproportional hazards. Biometrics 64:724–732

    Article  MATH  MathSciNet  Google Scholar 

  • Ying Z, Jung SH, Wei LJ (1995) Survival analysis with median regression models. J Am Stat Assoc 90:178–184

    Article  MATH  MathSciNet  Google Scholar 

  • Zucker DM (1998) Restricted mean life with covariates: modification and extension of a useful survival analysis method. J Am Stat Assoc 93:702–709

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the National Science Council of Taiwan under Grant 95-2118-M-008-007-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Ing Chen.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Let \(F_i (t)=1-\prod _{u\le t} {\{ {1-\Lambda _{0i} (du)} \}} \) and \(F_i (t|\mathbf{x})=1-\prod _{u\le t} {\{ {1-\Lambda _{0i} (du)} \}} ^{\exp ({\varvec{{\upbeta }}}^\prime \mathbf{x})}\) be the baseline distribution function and conditional distribution function, respectively, for subjects with covariates x in group \(i, i=0, 1\). The corresponding estimators under stratified Cox model (3) are then given by

$$\begin{aligned} \hat{{F}}_{si} (t)=1-\prod _{u\le t} {\left\{ {1-{\hat{\Lambda }}_{s0i} (du)} \right\} } \end{aligned}$$
(11)

and

$$\begin{aligned} \hat{{F}}_{si} (t|\mathbf{x})=1-\prod _{u\le t} {\left\{ {1-{\hat{\Lambda }}_{s0i} (du)} \right\} } ^{\exp \big ({\varvec{\hat{\upbeta }}}^\prime \mathbf{x}\big )} \end{aligned}$$
(12)

The results of Theorem 3.2 and 3.4 in Andersen et al. (1993) imply that, for \(i=0, 1\), as \(n\rightarrow \infty \),

$$\begin{aligned} \sqrt{n}\Big \{{\hat{\Lambda }}_{si} (t)-\Lambda _i (t),{\varvec{\hat{\upbeta }}}-{\varvec{\upbeta }}\Big \} \mathop {\rightarrow }^{d}\Big \{W_i (a_{si} (t))-\mathbf{b}_{si} (t{)}'\Sigma ^{-1/2}\mathbf{Z},\Sigma ^{-1/2}\mathbf{Z}\Big \}. \end{aligned}$$
(13)

Since

$$\begin{aligned} |\sqrt{n}\Big \{\hat{{S}}_{si} (t)-S_i (t)\Big \}-\sqrt{n}\Big \{\exp (-{\hat{\Lambda }}_{si} (t))-\exp (-\Lambda _i (t))\Big \}|\mathop {\rightarrow }^{p}0, \end{aligned}$$

by incorporating (A1)–(A3), we have

$$\begin{aligned} \sqrt{n}\Big \{\hat{{F}}_{si} (t)-F_i (t),{\varvec{{\hat{\upbeta }}}}-{\varvec{\upbeta }}\Big \} \mathop {\rightarrow }^{d}S_i (t)\Big \{W_i (a_{si} (t))-\mathbf{b}_{si} (t{)}'\Sigma ^{-1/2}\mathbf{Z},\Sigma ^{-1/2}\mathbf{Z}\Big \}. \end{aligned}$$

We then obtain, by using Theorem 1 in Doss and Gill (1992) along with the mean value theorem, that

$$\begin{aligned} \sqrt{n}\Big \{\hat{{\xi }}_{si} (\mathbf{x})-\xi _i (\mathbf{x})\Big \}=\frac{Q_i (\mathbf{x})}{F_i^d (\xi _i (\mathbf{x}))} -\left( {\frac{\exp (-{\varvec{\upbeta }}^\prime \mathbf{x})\ell n2}{\lambda _{0i} (\xi _i (\mathbf{x}))}} \right) ^{\prime }\sqrt{n}({\varvec{{\hat{\upbeta }}}}-{\varvec{\upbeta }})+R_n (\mathbf{x}), \end{aligned}$$

where \(F^{d}\) is the derivative of \(F\),

$$\begin{aligned} Q_i (\mathbf{x})=-\sqrt{n}\left\{ \hat{{F}}_{si} \Big (F_i^{-1} \Big (1-2^{-\exp (-\mathbf{{\beta }'x})}\Big )\Big )-\left[ 1-2^{-\exp (-{\varvec{\upbeta }}^\prime \mathbf{x})}\right] \right\} \end{aligned}$$

and

$$\begin{aligned} \mathop {\sup }\limits _{\mathbf{x}\in {\varvec{{\mathfrak {X}}}}} R_n (\mathbf{x})\mathop {\rightarrow }^{p}0. \end{aligned}$$

After some algebraic manipulation, we have that, for \(i=0\), 1, as \(n\rightarrow \infty \),

$$\begin{aligned} \sqrt{n}\Big \{\hat{{\xi }}_{si} (\mathbf{x})-\xi _i (\mathbf{x})\Big \}\mathop {\rightarrow }^{d}U_{si} (\mathbf{x})\, \hbox {in}\, C_q ({\varvec{{\mathfrak {X}}}}), \end{aligned}$$

where, for \(i=0, 1\),

$$\begin{aligned} U_{si} (\mathbf{x})=\frac{W_i \{a_{si} (\xi _i (\mathbf{x}))\}}{\lambda _{0i} (\xi _i (\mathbf{x}))}+{\varvec{\upomega }}_{si} (\mathbf{x})\Sigma ^{-1/2}\mathbf{Z} \end{aligned}$$

with

$$\begin{aligned} {\varvec{\upomega }}_{si} (\mathbf{x})=\frac{\mathbf{b}_{si} (\xi _i (\mathbf{x}))-\mathbf{x}\exp (-{\varvec{\upbeta }}^\prime \mathbf{x})\ell n2}{\lambda _{0i} (\xi _i (\mathbf{x}))}, \quad i= 0,1. \end{aligned}$$

Therefore, the continuous mapping theorem (Billingsley 1999) implies that

$$\begin{aligned}&\sqrt{n}\Big \{\hat{{\Delta }}_s (\mathbf{x})-\Delta (\mathbf{x})\Big \}=\sqrt{n}\Big \{\hat{{\xi }}_{s1} (\mathbf{x})-\xi _1 (\mathbf{x})\Big \}-\sqrt{n}\Big \{\hat{{\xi }}_{s0} (\mathbf{x})-\xi _0 (\mathbf{x})\Big \}\\&\quad \quad \quad \mathop {\rightarrow }^{d}U_s (\mathbf{x})=U_{s1} (\mathbf{x})-U_{s0} (\mathbf{x}) \,\hbox {in} \,C_q ({\varvec{{\mathfrak {X}}}}), \end{aligned}$$

where

$$\begin{aligned} U_s (\mathbf{x})&= \frac{W_1 \{a_{s1} (\xi _1 (\mathbf{x}))\}}{\lambda _{01} (\xi _1 (\mathbf{x}))}+{\varvec{\upomega }}_{s1} (\mathbf{x})\Sigma ^{-1/2}\mathbf{Z}-\frac{W_0 \{a_{s0} (\xi _0 (\mathbf{x}))\}}{\lambda _{00} (\xi _0 (\mathbf{x}))}-{\varvec{\upomega }}_{s0} (\mathbf{x})\Sigma ^{-1/2}\mathbf{Z}\\&= \frac{W_1 \{a_{s1} (\xi _1 (\mathbf{x}))\}}{\lambda _{01} (\xi _1 (\mathbf{x}))}-\frac{W_0 \{a_{s0} (\xi _0 (\mathbf{x}))\}}{\lambda _{00} (\xi _0 (\mathbf{x}))}+\{{\varvec{\upomega }}_{s1} (\mathbf{x})-{\varvec{\upomega }}_{s0} (\mathbf{x})\}^{\prime }\Sigma ^{-1/2}\mathbf{Z} \end{aligned}$$

is a zero mean Gaussian process in \(C_q ({\varvec{{\mathfrak {X}}}})\). Since the variance of \(W_i \{a_{si} (\xi _i (\mathbf{x}))\}\) is \(a_{si} (\xi _i (\mathbf{x})), i= 0,1\), and the variance of \(\mathbf{Z}\) is an identity matrix, the variance function of \(U_s (\mathbf{x})\) is obtained as

$$\begin{aligned} \sigma _s^2 (\mathbf{x})&= \quad \frac{a_{s1} (\xi _1 (\mathbf{x}))}{\{\lambda _{01} (\xi _1 (\mathbf{x}))\}^{2}}+\frac{a_{s0} (\xi _0 (\mathbf{x}))}{\{\lambda _{00} (\xi _0 (\mathbf{x}))\}^{2}}\nonumber \\&+\{{\varvec{\upomega }}_{s1} (\mathbf{x})-{\varvec{\upomega }}_{s0} (\mathbf{x})\}^{\prime }\Sigma ^{-1}\{{\varvec{\upomega }}_{s1} (\mathbf{x})-{\varvec{\upomega }}_{s0} (\mathbf{x})\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YI., Chang, YM. & Lee, JY. Confidence bands for the difference between two median survival times as a function of covariates. Lifetime Data Anal 21, 97–118 (2015). https://doi.org/10.1007/s10985-013-9283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-013-9283-3

Keywords

Navigation