Skip to main content

Advertisement

Log in

Plant and animal diversity in a region of the Southern Alps: the role of environmental and spatial processes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Different organisms respond to landscape configuration and spatial structure in different terms and across different spatial scales. Here, regression models with variation partitioning were applied to determine relative influence of the three groups of variables (climate, land use and environmental heterogeneity) and spatial structure variables on plant, bird, orthopteran and butterfly species richness in a region of the Southern Alps, ranging in elevation from the sea level to 2,780 m. Grassland and forest cover were positively correlated with species richness in both taxonomic groups, whilst species richness decreased with increasing urban elements and arable land. The variation was mainly explained by the shared component between the three groups in plants and between landscape and environmental heterogeneity in birds. The variation was related to independent land use effect in insects. The distribution in species richness was spatially structured for plants, birds and orthopterans, whilst in butterflies, no spatial structure was detected. Plant richness was associated with linear trend variation and broad-scale spatial structure in the northern part of the region, whilst bird richness with broad-scale variation which occurs on the external Alpine ridge. Orthopteran diversity was strongly related to fine-scale spatial structure, generated by dynamic processes or by unmeasured spatially structured abiotic factors. Although the study was carried out in relatively small area, the four taxonomic groups seem to respond to biodiversity drivers in a surprisingly different way. This has considerable implications for conservation planning as it restricts the usefulness of simple indicators in prioritizing areas for conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AA.VV. (1991) Inventario faunistico regionale permanente. Primi risultati relativi al periodo riproduttivo 1986–1990. Direzione Regionale Foreste e Parchi, Udine

    Google Scholar 

  • Atauri JA, De Lucio JV (2001) The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecol 16:147–159

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Bossenbroek JM, Wagner HH, Wiens JA (2005) Taxon-dependent scaling: beetles, birds and vegetation at four North American grassland sites. Landscape Ecol 20:675–688

    Article  Google Scholar 

  • Bressan E (2005) Monitoraggio della biodiversità della regione Friuli Venezia Giulia (Fanerogame, Avifauna e Mammalofauna). PhD Thesis, University of Trieste, Trieste

  • Brose U (2003) Regional diversity of temporary wetland Carabid beetle communities: a matter of landscape features or cultivation intensity? Agric Ecosyst Environ 98:163–167

    Article  Google Scholar 

  • Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Flather CH, McGarigal K (2008) Do forest community types provide a sufficient basis to evaluate biological diversity? Front Ecol Environ 6:13–17

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc B Biol Sci 268:25–29

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto P (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Dray S, Legendre P, Blanchet FG (2007) packfor: R package for forward selection with permutation. Version 0.0-7

    Google Scholar 

  • Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Proc R Soc B Biol Sci 363:777–787

    Google Scholar 

  • Gaston KJ (1998) Species richness: measure and measurement. In: Gaston KJ, Spicer JI (eds) Biodiversity: an introduction. Blackwell Science, Oxford, pp 77–113

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  PubMed  CAS  Google Scholar 

  • Gotelli NJ, Anderson MJ, Arita HT, Chao A, Colwell RK, Connolly SR, Currie DJ, Dunn RR, Graves GR, Green JL, Grytnes JA, Jiang YH, Jetz W, Kathleen Lyons S, McCain CM, Magurran AE, Rahbek C, Rangel TF, Soberón J, Webb CO, Willig MR (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecol Lett 12:873–886

    Article  PubMed  Google Scholar 

  • Grand J, Buonaccorsi J, Cushman SA, Griffin CR, Neel MC (2004) A multiscale landscape approach to predicting bird and moth rarity hotspots in a threatened pitch pine-scrub oak community. Conserv Biol 18:1063–1077

    Article  Google Scholar 

  • Guisan A, Rahbek C (2011) SESAM–a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41:824–835

    Article  Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385:252–254

    Article  CAS  Google Scholar 

  • Kivinen S, Luoto M, Kuussaari M, Helenius J (2006) Multi-species richness of boreal agricultural landscapes: effects of climate, biotope, soil and geographical location. J Biogeogr 33:862–875

    Article  Google Scholar 

  • Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1810

    Article  Google Scholar 

  • Lapresa A, Angelici P, Festari I (2004) Gli habitat secondo la nomenclatura EUNIS: manuale di classificazione per la realtà italiana. APAT, Roma

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Borcard D, Blanchet G, Dray S (2010) PCNM: PCNM spatial eigenfunction and principal coordinate analyses. R package version 2.1/r82. https://r-forge.r-project.org/R/?group_id=195

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • Mac Nally R, Fleishman E (2002) Using ‘indicator’ species to model species richness: model development and predictions. Ecol Appl 12:79–92

    Article  Google Scholar 

  • Mac Nally R, Fleishman E, Bulluck LP, Betrus CJ (2004) Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. J Biogeogr 31:917–929

    Article  Google Scholar 

  • Marini L, Prosser F, Klimek S, Marrs RH (2008a) Water-energy, land-cover, and heterogeneity drivers of the distribution of plant species richness in a mountain region of the European Alps. J Biogeogr 35:1826–1839

    Article  Google Scholar 

  • Marini L, Fontana P, Scotton M, Klimek S (2008b) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370

    Article  Google Scholar 

  • Marini L, Bona E, Kunin WE, Gaston KJ (2011) Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. J Biogeogr 38:78–88

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  PubMed  CAS  Google Scholar 

  • McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. J Biogeogr 16:1–13

    Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • O’Brien EM (1993) Climatic gradients in woody plant species richness: towards an explanation based on an analysis of Southern Africa’s woody flora. J Biogeogr 20:181–198

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB, Simpson GL, Stevens MHH (2008) Vegan: community ecology package. R package version 1.15-1. http://r-forge.r-project.org/projects/vegan/

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Poldini L (2002) Nuovo atlante corologico delle piante vascolari nel Friuli Venezia Giulia. Regione Autonoma Friuli-Venezia Giulia–Direzione Regionale Foreste e Parchi, Università degli Studi di Trieste–Dipartimento di Biologa, Udine

  • Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182

    Article  PubMed  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness—a uniform pattern. Ecography 18:200–205

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ricketts T, Imhoff M (2003) Biodiversity, urban areas, and agriculture: locating priority ecoregions for conservation. Conserv Ecol 8, 1. http://www.consecol.org/vol8/iss2/art1

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rowe RJ (2009) Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32:411–422

    Article  Google Scholar 

  • Ruffo S, Stoch F (eds) (2007) Checklist and distribution of the Italian fauna. Ministry of Environment, Territory Protection and Sea, version 5.3.8

  • Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315

    Article  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Steck CE, Bürgi M, Bolliger J, Kienast F, Lehmann A, Gonseth Y (2007) Conservation of grasshopper diversity in a changing environment. Biol Conserv 138:360–370

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Kleijn AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Van Dyke F (2008) Conservation biology: foundations, concepts, applications, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Whittaker RJ, Nogués-Bravo D, Araújo MB (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecol Biogeogr 16:76–89

    Google Scholar 

  • Woodward FI (1990) The impact of low temperatures in controlling the geographical distribution of plants. Philos Trans R Soc Lond B Biol Sci 326:585–593

    Article  Google Scholar 

  • Yamaura Y, Amano T, Kusumoto Y, Nagata H, Okabe K (2011) Climate and topography drives macroscale biodiversity through land-use change in a human-dominated world. Oikos 120:427–451

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Marisa Vidali for providing information on the distribution of plants, Fabio Stoch on the distribution of insects and OSMER for climatic data. We thank Ruth Tadina for improving the English. We are grateful to Jeffrey D. Holland and two anonymous referees for the insightful comments which considerably improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Dainese.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainese, M., Poldini, L. Plant and animal diversity in a region of the Southern Alps: the role of environmental and spatial processes. Landscape Ecol 27, 417–431 (2012). https://doi.org/10.1007/s10980-011-9687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9687-y

Keywords

Navigation