Skip to main content
Log in

Tetanic depression and catch-like effect in fast motor units of the rat medial gastrocnemius at linearly increasing and decreasing stimulation frequencies

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The forces developed by fast resistant (FR) and fast fatigable (FF) motor units of the rat medial gastrocnemius during trains of electrical stimuli at linearly increasing or decreasing frequency were measured at the instantaneous frequency of 60 Hz and compared with the force evoked at a constant 60 Hz. In both motor unit types, the mean forces during stimulation at increasing frequency were depressed by 17%, while those recorded during stimulation at decreasing frequency were increased by 15% (FR) or 10% (FF) compared to values observed during constant-rate stimulation. During trains of stimuli at an increasing rate, the instantaneous frequency necessary to induce a force comparable to that produced at constant 60 Hz stimulation in FR and FF units was 84 and 88 Hz, respectively; whereas for the same units during stimulation at a decreasing rate these values were 45 and 47 Hz, respectively. When the stimulation frequency was increased up to 60 Hz and then held at this level, the force of both motor unit types was depressed by approximately 6% compared to 60 Hz constant-rate stimulation. From the available data it may be concluded that the phenomenon of tetanic depression is able to limit the development of force when the motoneuronal firing rate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbate F, Burton JD, De Haan A, Westerblad H (2002) Prolonged force increase following a high-frequency burst is not due to a sustained elevation of [Ca2+]i. Am J Physiol Cell Physiol 283:C42–C47

    PubMed  CAS  Google Scholar 

  • Bagni MA, Cecchi G, Colombini B, Colomo F (2002) A non-cross-bridge stiffness in activated frog muscle fibers. Biophys J 82:3118–3127

    Article  PubMed  CAS  Google Scholar 

  • Binder-Macleod SA, Clamann HP (1989) Force output of cat motor units stimulated with trains of linearly varying frequency. J Neurophysiol 61:208–217

    PubMed  CAS  Google Scholar 

  • Boe SG, Stashuk DW, Brown WF, Doherty TJ (2005) Decomposition-based quantitative electromyography: effect of force on motor unit potentials and motor unit number estimates. Muscle Nerve 31:365–373

    Article  PubMed  Google Scholar 

  • Buller AJ, Kean CJC, Ranatunga KW, Smith JM (1981) Post-tetanic depression of twitch tension in the cat soleus muscle. Exp Neurol 73:78–89

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Rudomin P, Zajac FE (1970) Catch property in single mammalian motor units. Science 168:122–124

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    PubMed  CAS  Google Scholar 

  • Burke RE, Rudomin P, Zajac FE (1976) The effect of activation history on the tension production by the individual muscle units. Brain Res 109:515–529

    Article  PubMed  CAS  Google Scholar 

  • Celichowski J (2001) Tetanic depression: a phenomenon influencing the production of tension in fast twitch motor units in rat medial gastrocnemius. Acta Neurobiol Exp 61:119–123

    CAS  Google Scholar 

  • Celichowski J, Bichler E (2000) The influence of increasing and decreasing frequency of stimulation on the contraction of motor units in rat medial gastrocnemius muscle. J Physiol Pharmacol 51:847–855

    PubMed  CAS  Google Scholar 

  • Celichowski J, Grottel K (1992) The dependence of twitch course of medial gastrocnemius and its motor units on stretching of the muscle. Arch Ital Biol 130:315–325

    PubMed  CAS  Google Scholar 

  • Celichowski J, Grottel K (1998) The influence of a doublet of stimuli at the beginning of the tetanus on its time course. Acta Neurobiol Exp 58:47–53

    CAS  Google Scholar 

  • Celichowski J, Krutki P, Łochyński D, Grottel K, Mrówczyński W (2004) Tetanic depression in fast motor units of the cat gastrocnemius. J Physiol Pharmacol 55:291–303

    PubMed  CAS  Google Scholar 

  • Celichowski J, Raikova R, Drzymała-Celichowska H, Ciechanowicz-Kowalczyk I, Krutki P, Rusev R (2008) Model-generated decomposition of unfused tetani of motor units evoked by random stimulation. J Biomech 41:3448–3454

    Article  PubMed  CAS  Google Scholar 

  • Christie A, Kamen G (2006) Doublet discharges in motoneurones of young and older adults. J Neurophysiol 95:2787–2795

    Article  PubMed  Google Scholar 

  • De Luca CJ, Lefever RS, McCue MP, Xenakis AP (1982) Behavior of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128

    PubMed  Google Scholar 

  • Duchateau J, Hainaut K (1986) Nonlinear summation of contractions in striated muscle. II. Potentiation of intracellular Ca2+ movements in single barnacle muscle fibers. J Muscle Res Cell Motil 7:18–24

    Article  PubMed  CAS  Google Scholar 

  • Gorassini M, Eken T, Bennett DJ, Kiehn O, Hultborn H (2000) Activity of hindlimb motor units during locomotion in the conscious rat. J Neurophysiol 83:2002–2011

    PubMed  CAS  Google Scholar 

  • Grottel K, Celichowski J (1990) Division of motor units in medial gastrocnemius muscle of the rat in the light of variability in their principal properties. Acta Neurobiol Exp 50:589–600

    CAS  Google Scholar 

  • Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  PubMed  CAS  Google Scholar 

  • Kernell D, Eerbeek O, Verhey BA (1983) Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Exp Brain Res 50:220–227

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Hunt CC, Quilliam JP (1951) Function of medullated small-nerve fibers in mammalian ventral roots: efferent muscle spindle innervation. J Neurophysiol 14:29–54

    PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB, Yemm R (1973) Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol 230:371–390

    PubMed  CAS  Google Scholar 

  • Moritz CT, Barry KB, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459

    Article  PubMed  Google Scholar 

  • Person RS, Kudina LP (1972) Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr Clin Neurophysiol 32:471–483

    Article  PubMed  CAS  Google Scholar 

  • Powers RK, Türker KS, Binder MD (2002) What can be learned about motoneurone properties from studying firing patterns. In: Gandevia SC, Proske U, Stuart DG (eds) Sensorimotor control of movement and posture. Kluwer/Plenum, New York, pp 199–206

    Google Scholar 

  • Ranatunga KW (1978) Characteristics of tension recruitment and mechanical activation in mammalian skeletal muscle. Exp Neurol 61:175–184

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW (1979) Potentiation of the isometric twitch and mechanisms of tension recruitment in mammalian skeletal muscle. Exp Neurol 63:266–276

    Article  PubMed  CAS  Google Scholar 

  • Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annu Rev Physiol 68:193–221

    Article  PubMed  CAS  Google Scholar 

  • Roots H, Offer GW, Ranatunga KW (2007) Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. J Muscle Res Cell Motil 28:123–139

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, Larimer JL (1968) The catch property of ordinary muscle. Proc Natl Acad Sci USA 61:909–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Polish Ministry of Science and Higher Education grant no. N N404 027 35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Łochyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łochyński, D., Celichowski, J. Tetanic depression and catch-like effect in fast motor units of the rat medial gastrocnemius at linearly increasing and decreasing stimulation frequencies. J Muscle Res Cell Motil 30, 153–160 (2009). https://doi.org/10.1007/s10974-009-9185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9185-x

Keywords

Navigation