Skip to main content
Log in

How the carbon nanotubes affect the glass transition kinetics and thermal stability of Cu–Se–Te–In chalcogenide glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carbon nanotube-added Cu5Se75Te10In10 glassy composites have been successfully developed by the melt quench mechanism. Scanning electron microscopy (SEM) study confirms the incorporation of multiwalled carbon nanotubes (MWCNTs) and the composition of the composite. Differential scanning calorimetry (DSC) has been effectively used to study the glass transition kinetics of MWCNT-added multicomponent Cu5Se75Te10In10 chalcogenide glassy composite under nonisothermal condition. The investigated value of glass transition temperature increases with a rise in CNT concentration at different heating rates (5, 10, 15 and 20 K min−1). It has been explained on the basis of a greater degree of efficient carbon nanotubes (CNTs)-mediated cross-linking through the glassy matrix. Kissinger’s and Moynihan’s relations were used to determine the activation energy of the glass transition mechanism as a function of glass transition temperature Tg at different heating rates and also with MWCNT concentrations. Thermal characteristics of MWCNT/Cu5Se75Te10In10 were studied using different quantitative methods such as Dietzel relation, Hurby’s parameter, Lie and Liu parameters, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh PK, Dwivedi DK. Chalcogenide glass: Fabrication techniques, properties and applications. Ferroelectrics. 2017;520.

  2. Vassilev VS, Boycheva SV. Chemical sensors with chalcogenide glassy membranes. Talanta. 2005;67:20–7.

    Article  CAS  Google Scholar 

  3. Schöning MJ, Kloock JP. About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: technological aspects of fabrication and miniaturization. Electroanalysis. 2007;19:2029–38.

    Article  Google Scholar 

  4. Yoon SM, Lee NY, Ryu SO, Choi KJ, Park YS, Lee SY, et al. Sb–Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron Dev Lett. 2006;27:445–7.

    Article  CAS  Google Scholar 

  5. Lu Y, Song S, Shen X, Wu L, Song Z, Liu B, et al. Investigation of Ga8Sb34Se58 material for low-power phase change memory. ECS Solid State Lett. 2013;2:P94–6.

    Article  CAS  Google Scholar 

  6. Svoboda R, Kincl M, Málek J. Thermal characterization of Se–Te thin films. J Alloys Compd. 2015;644:40–6.

    Article  CAS  Google Scholar 

  7. Raoux S, Wełnic W, Lelmini D. Phase change materials and their application to nonvolatile memories. Chem Rev. 2010;110:240–67.

    Article  CAS  Google Scholar 

  8. Wuttig M, Steimer C. Phase change materials: from material science to novel storage devices. Appl Phys A. 2007;87(3):411–7.

    Article  CAS  Google Scholar 

  9. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:824–31.

    Article  CAS  Google Scholar 

  10. Wełnic W, Kalb JA, Wamwangi D, Steimer C, Wuttig M. Phase change materials: from structures to kinetics. J Mater Res. 2007;22:2368–75.

    Article  Google Scholar 

  11. Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids. 2003;330:1–12.

    Article  CAS  Google Scholar 

  12. Wilhelm AA, Boussard-Plédel C, Coulombier Q, Lucas J, Bureau B, Lucas P. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv Mater. 2007;19:3796–800.

    Article  CAS  Google Scholar 

  13. Abdel-Rahim MA, Gaber A, Abu-Sehly AA, Abdelazim NM. Crystal growth kinetics in Se87.5Te10Sn2.5 glass. J Non-Cryst Solids; 2013;376:158–64. http://dx.doi.org/10.1016/j.jnoncrysol.2013.05.030.

  14. Rahim Abdel M. A study of the crystallization kinetics of some Se ± Te ± Sb glasses. J Non Cryst Solids. 1998;241.

  15. Chander R, Thangaraj R. Optical and electrical properties of Te-substituted Sn–Sb–Se semiconducting thin films. Thin Solid Films; 2012;520:1757–61. http://dx.doi.org/10.1016/j.tsf.2011.08.054.

  16. Saiter JM, Ledru J, Hamou A, Saffarini G. Crystallization of AsxSe1−x from the glassy state (0.005 < x < 0.03). Phys B Condens Matter. 1998;245:256–62.

  17. Nagels P, Tichý L, Sleeckx E, Callaerts R. Photodarkening induced at low temperatures in amorphous GexSe100−x, films. J Non-Cryst Solids. 1998;227–230:705–9.

    Article  Google Scholar 

  18. Hachiya K. Density functional electronic structures calculations of GeSe2. J Non-Cryst Solids. 2001;291:160–6.

    Article  CAS  Google Scholar 

  19. Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep. 2005;49:89–112.

    Article  Google Scholar 

  20. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106:1105–36.

    Article  CAS  Google Scholar 

  21. Cali C, Foix D, Taillades G, Siebert E, Gonbeau D, Pradel A, Ribes M. Copper(II) selective electrode based on chalcogenide materials: study of the membrane/solution interface with electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Mater Sci Eng C. 2002;21(1–2):3–8.

    Article  Google Scholar 

  22. Naqvi SF, Deepika, Saxena NS, Sharma K, Bhandari D. Glass-crystal transformations in Se80–xTe20Agx (x = 0, 3, 5, 7 and 9) glasses. J Alloys Compd. 2010;506:956–62.

  23. Upadhyay AN, Tiwari RS, Singh K. Microstructural and thermal investigations of carbon nanotube additive Se80Te16Cu4 glassy composites. Mater Lett. 2016;164:449–51. http://dx.doi.org/10.1016/j.matlet.2015.10.163.

  24. Upadhyay AN, Tiwari RS, Mehta N, Singh K. Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se85Te10Ag5 glassy composites. Mater Lett. 2014;136:445–8. http://dx.doi.org/10.1016/j.matlet.2014.08.092.

  25. Ajayan PM, Tour JM. Materials science: nanotube composites. Nature. 2007;447:1066–8.

    Article  CAS  Google Scholar 

  26. Ram I Sen, Singh K. Thermal and mechanical properties of CNT-Se90−xTe10Agx(x = 0, 5 and 10) glassy composites. J Alloys Compd. 2013;576:358–62. http://dx.doi.org/10.1016/j.jallcom.2013.05.208.

  27. Upadhyay AN, Singh K. Kinetics of phase transformation of carbon nanotubes containing Se85Te10Ag5 glassy composites. Mater Res Express. 2016;3:0–7.

  28. Kasap SO, Juhasz C. Kinematical transformations in amorphous selenium alloys used in xerography. J Mater Sci. 1986;21:1329–40.

    Article  CAS  Google Scholar 

  29. Larmagnac JP, Grenet J, Michon P. Glass transition temperature dependence on heating rate and on ageing for amorphous selenium films. J Non-Cryst Solids. 1981;45:157–68.

    Article  CAS  Google Scholar 

  30. Jaiswal P, Dwivedi DK. Impact of CNT on structural, thermal, and dielectric properties of the multicomponent Cu5Se75Te10In10 chalcogenide glassy system. J Mater Sci Mater Electron. 2020;31:394–403. https://doi.org/10.1007/s10854-019-02541-0.

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Lucovsky G. Comments on the structure of chalcogenide glasses from infrared spectroscopy. Mater Res Bull. 1969;4(8):505–14.

    Article  CAS  Google Scholar 

  33. Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford: Oxford University Press; 2012.

    Google Scholar 

  34. Grady BP. Carbon nanotube–polymer composites: manufacture, properties, and applications. London: Wiley; 2011.

    Book  Google Scholar 

  35. Das GC, Bever MB, Uhlmann DR, Moss SC. Relaxation phenomena in amorphous selenium–tellurium alloys. J Non-Cryst Solids. 1972;7:251–70.

    Article  CAS  Google Scholar 

  36. El-Mously MK, El-Zaidia MM. Thermal and electrical conductivities during the devitrification of TeSe12.5 amorphous alloy. J Non-Cryst Solids. 1978;27:265–71.

  37. Singh PK, Dwivedi DK. Influence of composition on structural properties and optical parameters of thermally evaporated Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) thin films. Ferroelectrics. 2018;531.

  38. Kotkata MF, El-Mously MK. A survey of amorphous Se–Te semiconductors and their characteristic aspects of crystallization. Acta Phys Hungarica. 1983;54:303–12.

    Article  CAS  Google Scholar 

  39. Weiser K, Gambino RJ, Reinhold JA. Laser-beam writing on amorphous chalcogenide films: crystallization kinetics and analysis of amorphizing energy. Appl Phys Lett. 1973;22:48–9.

    Article  CAS  Google Scholar 

  40. Dietzel A. Glass structure and glass properties. Glasstech. 1968;22:41.

    Google Scholar 

  41. Suryanarayana C, Seki I, Inoue A. A critical analysis of the glass-forming ability of alloys. J Non-Cryst Solids. 2009;355:355–60. http://dx.doi.org/10.1016/j.jnoncrysol.2008.12.009.

  42. Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys. 1972;22:1187–93.

    Article  Google Scholar 

  43. Lu ZP, Liu CT. Glass formation criterion for various glass-forming systems. Phys Rev Lett. 2003;91:1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, P., Rao, V., Singh, P.K. et al. How the carbon nanotubes affect the glass transition kinetics and thermal stability of Cu–Se–Te–In chalcogenide glasses. J Therm Anal Calorim 147, 1053–1060 (2022). https://doi.org/10.1007/s10973-020-10485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10485-5

Keywords

Navigation