Skip to main content
Log in

Comparison of micro-DSC and light scattering methods for studying the phase behavior of n-alkane in the oil-in-water dispersion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article investigates the phase behavior of n-octacosane (C28H58) in the form of an aqueous dispersion with a particle size of about 100 nm. Samples of stable dispersions were prepared by ultrasonication without the addition of surfactants. Studies at various concentrations of n-alkane were performed by differential scanning calorimetry (DSC), powder X-ray diffraction, and light scattering methods. At low n-alkane concentrations, the sensitivity of DSC is not sufficient to detect the paraffin phase transitions. The light scattering method allows determining the phase transition temperatures (melting, crystallization, rotator phases) of n-alkane even in the 10−4 mass% dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mújika-Garai R, Aguilar-García C, Juárez-Arroyo F, Covián-Sánchez I, Nolla J, Esquena J, et al. Stabilization of paraffin emulsions used in the manufacture of chipboard panels by liquid crystalline phases. J Dispers Sci Technol. 2007;28:829–36.

    Article  Google Scholar 

  2. Nowacka M, Rybak K, Wiktor A, Mika A, Boruszewski P, Woch J, et al. The quality and safety of food contact materials—paper and cardboard coated with paraffin emulsion. Food Control. 2018;93:183–90.

    Article  CAS  Google Scholar 

  3. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev. 2016;60:1470–97.

    Article  Google Scholar 

  4. Kuryakov VN, Ivanova DD, Semenov AP, Gushchin PA, Ivanov EV, Novikov AA, et al. Study of phase transitions in n-tricosane/bitumen aqueous dispersions by the optical method. Energy Fuels. 2020;34(5):5168–75. https://doi.org/10.1021/acs.energyfuels.9b03566.

    Article  CAS  Google Scholar 

  5. Kuryakov VN, De Sanctis Lucentini PG, Ivanova DD. Tricosane (C23H48) and octacosane (C28H58) mixture phase transition insight via light scattering techniques. IOP Conf Ser Mater Sci Eng. 2018;347:012034.

    Article  Google Scholar 

  6. Qiu X, Lu L, Tang G, Song G. Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09354-y.

    Article  Google Scholar 

  7. Hasanabadi S, Sadrameli SM, Sami S. Preparation, characterization and thermal properties of surface-modified expanded perlite/paraffin as a form-stable phase change composite in concrete. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09440-1.

    Article  Google Scholar 

  8. Bukhalkin DD, Semenov AP, Novikov AA, Mendgaziev RI, Stoporev AS, Gushchin PA, et al. Phase change materials in energy: current state of research and potential applications. Chem Technol Fuels Oils. 2020;55:733–41.

    Article  CAS  Google Scholar 

  9. Zhang X, Wu J, Niu J. PCM-in-water emulsion for solar thermal applications: the effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics. Sol Energy Mater Sol Cells. 2016;147:211–24.

    Article  CAS  Google Scholar 

  10. Saydam V, Duan X. Dispersing different nanoparticles in paraffin wax as enhanced phase change materials. J Therm Anal Calorim. 2019;135:1135–44.

    Article  CAS  Google Scholar 

  11. Shchukina EM, Graham M, Zheng Z, Shchukin DG. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev R Soc Chem. 2018;47:4156–75.

    Article  CAS  Google Scholar 

  12. Sirota EB, King HE, Singer DM, Shao HH. Rotator phases of the normal alkanes: an x-ray scattering study. J Chem Phys. 1993;98:5809–24.

    Article  CAS  Google Scholar 

  13. Sirota EB, Singer DM. Phase transitions among the rotator phases of the normal alkanes. J Chem Phys. 1994;101:10873–82.

    Article  CAS  Google Scholar 

  14. Kraack H, Sirota EB, Deutsch M. Measurements of homogeneous nucleation in normal-alkanes. J Chem Phys. 2000;112:6873–85.

    Article  CAS  Google Scholar 

  15. Xie B, Shi H, Jiang S, Zhao Y, Han CC, Xu D, et al. Crystallization behaviors of n-nonadecane in confined space: observation of metastable phase induced by surface freezing. J Phys Chem B. 2006;110:14279–82.

    Article  CAS  Google Scholar 

  16. Wang D, Sui J, Qi D, Deng S, Wei Y, Wang X, et al. Phase transition of docosane in nanopores. J Therm Anal Calorim. 2019;135:2869–77.

    Article  CAS  Google Scholar 

  17. Li G, Li W. Synthesis and characterization of microencapsulated n-octadecane with hybrid shells containing 3-(trimethoxysilyl) propyl methacrylate and methyl methacrylate. J Therm Anal Calorim. 2017;129:915–24.

    Article  CAS  Google Scholar 

  18. Turnbull D. The subcooling of liquid metals. J Appl Phys. 1949;20:817–817.

    Article  CAS  Google Scholar 

  19. Turnbull D, Cormia RL. Kinetics of crystal nucleation in some normal alkane liquids. J Chem Phys. 1961;34:820–31.

    Article  CAS  Google Scholar 

  20. Description of the type of measuring instruments. Differential scanning calorimeters “Setaram instrumentation” (in Russian). 2015. https://fgis.gost.ru/fundmetrology/registry/4/items/374659.

  21. Fleming FP, De Andrade SL, Lima G, Dos SV, Herzog I, Orlande HRB, Daridon J-L, et al. Thermal conductivity of heavy, even-carbon number n-alkanes (C22 to C32). Fluid Phase Equilib. 2018;477:78–86.

    Article  CAS  Google Scholar 

  22. Heyding RD, Russell KE, Varty TL, St-Cyr D. The normal paraffins revisited. Powder Diffr. 1990;5:93–100.

    Article  CAS  Google Scholar 

  23. Johnson JF. Phase transformations in commercial paraffin waxes. Ind Eng Chem. 1954;46:1046–8.

    Article  CAS  Google Scholar 

  24. Voronov VP. Surface precrystallization of normal C24 alkane in porous glass. J Exp Theor Phys. 2000;91:144–9.

    Article  CAS  Google Scholar 

  25. Provost E, Balesdent D, Bouroukba M, Petitjean D, Dirand M, Ruffier-Meray V. Phase diagram of n-hexacosane and n-octacosane: experimental determination and calculation. J Chem Thermodyn. 1999;31:1135–49.

    Article  CAS  Google Scholar 

  26. Schaerer AA, Busso CJ, Smith AE, Skinner LB. Properties of pure normal alkanes in the C17 to C36 range. J Am Chem Soc. 1955;77:2017–9.

    Article  CAS  Google Scholar 

  27. Domanska U, Wyrzykowska-Stankiewicz D. Enthalpies of fusion and solid-solid transition of even-numbered paraffins C22H46, C24H50, C26H54 and C28H58. Thermochim Acta. 1991;179:265–71.

    Article  CAS  Google Scholar 

  28. Company J-C. Mésure et interprétation des équilibres de cristallisation de solutions de paraffines lourdes et d’hydrocarbures aromatiques. Chem Eng Sci. 1973;28:318–23.

    Article  CAS  Google Scholar 

  29. Sarı A, Alkan C, Karaipekli A, Uzun O. Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy. 2009;83:1757–63.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (Grant Number 19-79-30091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kuryakov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryakov, V., Zaripova, Y., Varfolomeev, M. et al. Comparison of micro-DSC and light scattering methods for studying the phase behavior of n-alkane in the oil-in-water dispersion. J Therm Anal Calorim 142, 2035–2041 (2020). https://doi.org/10.1007/s10973-020-10001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10001-9

Keywords

Navigation