Skip to main content
Log in

Synthesis and characterization of Ag-doped 45S5 bioglass and chitosan/45S5-Ag biocomposites for biomedical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper approaches the synthesis and characterization of pure (45S5) and Ag-doped (45S5-Ag) bioglasses obtained through the sol–gel method and the development of chitosan/45S5-Ag biocomposites, followed by their performance evaluation as biomaterial candidates. The bioglasses were made from the precursors of tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate tetrahydrate, and sodium carbonate. Silver nitrate at the concentrations of 5 and 10% was used as the doping agent. The gel production was followed by a drying process at 60 °C for 24 h, and then, heat treatment at 700 °C was carried out for 2 h. Next, the bioglass powders were added to a chitosan solution at the concentration of 80% ww−1. The solutions were lyophilized before and after neutralization. The samples were characterized via TG, DTA, DSC, DRX, FTIR, SEM, OM, biodegradation, cytotoxicity, and antibacterial activity. Through TG, the increase in silver percentage in the bioglass resulted in lower mass loss of biocomposites, while for DSC higher thermal stability of the polymeric phase was observed for the doped samples. The biological assays demonstrate that CB5 and CB10 samples present inhibition activity against gram-positive and gram-negative bacteria. Both CB5 and CB10 can be almost entirely degraded by phosphate-buffered saline in 28 days and are not cytotoxic, which lays bare that these samples can be used for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kargozar S, Mozafari M, Hill RG, Milan PB, Joghataei MT, Hamzehlou S, et al. Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Mater Today Proc. 2018;5(7):15532–9.

    CAS  Google Scholar 

  2. Koohkan R, Hooshmand T, Tahriri M, Mohebbi-Kalhori D. Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram Int. 2018;44(2):2390–9.

    CAS  Google Scholar 

  3. Naseri S, Lepry WC, Maisuria VB, Tufenkji N, Nazhat SN. Development and characterization of silver-doped sol–gel-derived borate glasses with anti-bacterial activity. J Non-Cryst Solids. 2019;505:438–46.

    CAS  Google Scholar 

  4. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW-H. The roles of ions on bone regeneration. Drug Discov Today. 2018;23(4):879–90.

    PubMed  Google Scholar 

  5. Xu H, Ge Y-W, Lu J-W, Ke Q-F, Liu Z-Q, Zhu Z-A, et al. Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem Eng J. 2018;354:285–94.

    CAS  Google Scholar 

  6. Kargozar S, Hamzehlou S, Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater Sci Eng C. 2019;97:1009–20.

    CAS  Google Scholar 

  7. Bellucci D, Salvatori R, Anesi A, Chiarini L, Cannillo V. SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: three paradigmatic cases. Mater Sci Eng C. 2019;96:757–64.

    CAS  Google Scholar 

  8. Fiume E, Barberi J, Verné E, Baino F. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater. 2018;9(1):24.

    PubMed Central  Google Scholar 

  9. Ibrahim NF, Mohamad H, Noor SNFM, Ahmad N. Melt-derived bioactive glass based on SiO2–CaO–Na2O–P2O5 system fabricated at lower melting temperature. J Alloy Compd. 2018;732:603–12.

    CAS  Google Scholar 

  10. Kaya S, Cresswell M, Boccaccini AR. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. Mater Sci Eng C. 2018;83:99–107.

    CAS  Google Scholar 

  11. Medeiros E, Santos A, Medeiros ES, Menezes RR. Scaffolds de Vidros Bioativos: desenvolvimento de Estruturas Bioativas Nanoestruturadas. Revista Eletrônica de Materiais e Processos. 2017;12(3):2017.

    Google Scholar 

  12. Miola M, Pakzad Y, Banijamali S, Kargozar S, Vitale-Brovarone C, Yazdanpanah A, et al. Glass-ceramics for cancer treatment: so close, or yet so far? Acta Biomater. 2019;83:55–70.

    CAS  PubMed  Google Scholar 

  13. Palza H, Escobar B, Bejarano J, Bravo D, Diaz-Dosque M, Perez J. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng C. 2013;33(7):3795–801.

    CAS  Google Scholar 

  14. Zhao B, Xu H, Gao Y, Xu J-Z, Yin H-M, Xu L, et al. Promoting osteoblast proliferation on polymer bone substitutes with bone-like structure by combining hydroxyapatite and bioactive glass. Mater Sci Eng C. 2019;96:1–9.

    CAS  Google Scholar 

  15. Buriti JS, Morais CRS, Santos LNRM, Oliveira FC, Buriti BMAB, Queiroz AJP, et al. Thermal, structural and spectroscopic properties of silico-aluminous vitreous monoliths doped with neodymium and erbium via sol–gel process. J Therm Anal Calorim. 2018;131(1):725–33.

    CAS  Google Scholar 

  16. Farias ACB. Síntese sol–gel de biomateriais à base de água de fontes hidrotermais para otimização do comportamento celular e regeneração dos tecidos ósseos [Dissertação]. Ponta Delgada: Universidade dos Açores; 2016.

    Google Scholar 

  17. Vale A, Pereira P, Barbosa A, Torrado E, Alves N. Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Mater Sci Eng C. 2019;94:161–8.

    CAS  Google Scholar 

  18. Frazão MCA, da Silva GV, Linhares TS, Lago ADN, Lima DM. Biovidro 45S5: um avanço biotecnológico nos materiais restauradores da odontologia. Revista da Faculdade de Odontologia de Lins. 2015;25(2):47–55.

    Google Scholar 

  19. Gupta N, Santhiya D, Murugavel S, Kumar A, Aditya A, Ganguli M, et al. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids Surf A. 2018;538:393–403.

    CAS  Google Scholar 

  20. Kumar A, Mariappan C, Sarahan B. Antibacterial and structural properties of mesoporous Ag doped calcium borosilicate glass-ceramics synthesized via a sol–gel route. J Non-Cryst Solids. 2019;505:431–7.

    CAS  Google Scholar 

  21. Liu Y, Li T, Ma H, Zhai D, Deng C, Wang J, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018;73:531–46.

    CAS  PubMed  Google Scholar 

  22. Popa A, Fernandes H, Necsulescu M, Luculescu C, Cioangher M, Dumitru V, et al. Antibacterial efficiency of alkali-free bioglasses incorporating ZnO and/or SrO as therapeutic agents. Ceram Int. 2019;45(4):4368–80.

    CAS  Google Scholar 

  23. Zhu N, Chatzistavrou X, Ge L, Qin M, Papagerakis P, Wang Y. Biological properties of modified bioactive glass on dental pulp cells. J Dent. 2019;83:18–26.

    CAS  PubMed  Google Scholar 

  24. Ahmed S, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–62.

    CAS  PubMed  Google Scholar 

  25. Baino F, Fiume E. Mechanical characterization of 45S5 bioactive glass-derived scaffolds. Mater Lett. 2019;245:14–7.

    CAS  Google Scholar 

  26. Ge YW, Lu JW, Sun ZY, Liu ZQ, Zhou J, Ke QF, et al. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. Nanomed Nanotechnol Biol Med. 2019;18:336–46.

    CAS  Google Scholar 

  27. Motealleh A, Eqtesadi S, Pajares A, Miranda P. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: effect of polymer composition. J Mech Behav Biomed Mater. 2018;84:35–45.

    CAS  PubMed  Google Scholar 

  28. Sundaram MN, Amirthalingam S, Mony U, Varma PK, Jayakumar R. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol. 2019;129:936–43.

    CAS  PubMed  Google Scholar 

  29. Vukajlovic D, Parker J, Bretcanu O, Novakovic K. Chitosan based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng C. 2019;96:955–67.

    CAS  Google Scholar 

  30. Buriti JS, Barreto MEV, Santos KO, Fook MVL. Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites. J Therm Anal Calorim. 2018;134(3):1521–30.

    CAS  Google Scholar 

  31. Antonino RSCMQ, Lia Fook BRP, Lima VAO, Rached RÍF, Lima EPN, Lima RJS, et al. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs. 2017;15(5):141.

    Google Scholar 

  32. ASTM. Standard test method for in vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. In: Materials ASfTa, editor.: Standards Worldwide Philadelphia; 2011. p. 7p.

  33. ISO. Biological evaluation of medical devices—part 5: Teste for in vitro cytotoxicity; 2009.

  34. Andrews J. BSAC standardized disc susceptibility testing method (version 4). J Antimicrob Chemother. 2005;56(1):60–76.

    CAS  PubMed  Google Scholar 

  35. El-Kady AM, Ali AF, Rizk RA, Ahmed MM. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int. 2012;38(1):177–88.

    CAS  Google Scholar 

  36. Moghanian A, Firoozi S, Tahriri M. Synthesis and in vitro studies of sol–gel derived lithium substituted 58S bioactive glass. Ceram Int. 2017;43(15):12835–43.

    CAS  Google Scholar 

  37. Clupper D, Hench L. Crystallization kinetics of tape cast bioactive glass 45S5. J Non-Cryst Solids. 2003;318(1–2):43–8.

    CAS  Google Scholar 

  38. Heidari S, Hooshmand T, Yekta BE, Tarlani A, Noshiri N, Tahriri M. Effect of addition of titanium on structural, mechanical and biological properties of 45S5 glass-ceramic. Ceram Int. 2018;44(10):11682–92.

    CAS  Google Scholar 

  39. Sharifianjazi F, Parvin N, Tahriri M. Synthesis and characteristics of sol–gel bioactive SiO2–P2O5–CaO–Ag2O glasses. J Non-Cryst Solids. 2017;476:108–13.

    CAS  Google Scholar 

  40. Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S, et al. Synthesis, characterization and in vitro biological evaluation of sol–gel derived Sr-containing nano bioactive glass. Silicon. 2017;9(4):535–42.

    CAS  Google Scholar 

  41. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol–gel method. Nanoscale Res Lett. 2015;10(1):87.

    PubMed  PubMed Central  Google Scholar 

  42. Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L. Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci: Mater Med. 2012;23(8):1849–66.

    CAS  Google Scholar 

  43. Pishbin F, Simchi A, Ryan M, Boccaccini A. Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications. Surf Coat Technol. 2011;205(23–24):5260–8.

    CAS  Google Scholar 

  44. Ziegler-Borowska M, Chełminiak D, Kaczmarek H, Kaczmarek-Kędziera A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J Therm Anal Calorim. 2016;124(3):1267–80.

    CAS  Google Scholar 

  45. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 2009;29(1):335–40.

    CAS  Google Scholar 

  46. El-Meliegy E, Mabrouk M, El-Sayed SA, El-Hady BMA, Shehata MR, Hosny WM. Novel Fe2O3-doped glass/chitosan scaffolds for bone tissue replacement. Ceram Int. 2018;44(8):9140–51.

    CAS  Google Scholar 

  47. Delben JRJ, Pimentel OM, Coelho MB, Candelorio PD, Furini LN, dos Santos FA, et al. Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim. 2009;97(2):433.

    CAS  Google Scholar 

  48. Ibrahim NF, Mohamad H, Noor SNFM. Characterization on melt-derived bioactive glass powder from SiO2–CaO–Na2O–P2O5 system. J Non-Cryst Solids. 2017;462:23–31.

    CAS  Google Scholar 

  49. Jung J-H, Kim D-H, Yoo K-H, Yoon S-Y, Kim Y, Bae M-K, et al. Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study. Clin Oral Invest. 2019;23(1):253–66.

    Google Scholar 

  50. Kaur K, Singh K, Anand V, Bhatia G, Singh S, Kaur H, et al. Magnesium and silver doped CaO–Na2O–SiO2–P2O5 bioceramic nanoparticles as implant materials. Ceram Int. 2016;42(11):12651–62.

    CAS  Google Scholar 

  51. Siqueira RL, Alves PFS, da Silva Moraes T, Casemiro LA, da Silva SN, Peitl O, Martins CHG, Zanotto ED. Cation-doped bioactive ceramics: in vitro bioactivity and effect against bacteria of the oral cavity. Ceram Int. 2019;45(7):9231–44.

    CAS  Google Scholar 

  52. Adams LA, Essien ER, Adesalu AT, Julius ML. Bioactive glass 45S5 from diatom biosilica. J Sci Adv Mater Dev. 2017;2(4):476–82.

    Google Scholar 

  53. Mariappan C, Ranga N. Influence of silver on the structure, dielectric and antibacterial effect of silver doped bioglass–ceramic nanoparticles. Ceram Int. 2017;43(2):2196–201.

    CAS  Google Scholar 

  54. Chlanda A, Oberbek P, Heljak M, Kijeńska-Gawrońska E, Bolek T, Gloc M, et al. Fabrication, multi-scale characterization and in vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering. Mater Sci Eng C. 2019;94:516–23.

    CAS  Google Scholar 

  55. Dasgupta S, Maji K, Nandi SK. Investigating the mechanical, physiochemical and osteogenic properties in gelatin–chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater Sci Eng C. 2019;94:713–28.

    CAS  Google Scholar 

  56. Mittal H, Ray SS, Kaith BS, Bhatia JK, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J. 2018;109:402–34.

    CAS  Google Scholar 

  57. Pourhaghgouy M, Zamanian A, Shahrezaee M, Masouleh MP. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater Sci Eng C. 2016;58:180–6.

    CAS  Google Scholar 

  58. Abdelghany A, ElBatal H, Ramadan R. Compatibility and bone bonding efficiency of gamma irradiated Hench’s Bioglass-Ceramics. Ceram Int. 2018;44(6):7034–41.

    CAS  Google Scholar 

  59. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic–polymer composites for biomedical applications: a review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175–91.

    CAS  PubMed  Google Scholar 

  60. El-Batal FH, El-Kheshen AA, El Aty AAA, El-Bassyouni GT. Studies of bone-bonding ability and antibacterial properties of Ag+, Cu2+ or Zn2+ ions doping within Hench’s Bioglass and glass–ceramic derivatives. Silicon. 2018;10(4):1231–41.

    CAS  Google Scholar 

  61. El-Rashidy AA, Waly G, Gad A, Hashem AA, Balasubramanian P, Kaya S, et al. Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol–gel process and modified Stöber method. J Non-Cryst Solids. 2018;483:26–36.

    CAS  Google Scholar 

  62. Sharma K, Kedia S, Singh A, Basak C, Chauhan A, Basu S, et al. Morphology and structural studies of laser treated 45S5 bioactive glass. J Non-Cryst Solids. 2016;440:43–8.

    CAS  Google Scholar 

  63. Vulpoi A, Baia L, Simon S, Simon V. Silver effect on the structure of SiO2–CaO–P2O5 ternary system. Mater Sci Eng C. 2012;32(2):178–83.

    CAS  Google Scholar 

  64. Caridade SG, Merino EG, Alves NM, de Zea Bermudez V, Boccaccini AR, Mano JF. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater. 2013;20:173–83.

    CAS  PubMed  Google Scholar 

  65. Foroughi MR, Karbasi S, Khoroushi M, Khademi AA. Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization. J Porous Mater. 2017;24(6):1447–60.

    CAS  Google Scholar 

  66. Liverani L, Lacina J, Roether JA, Boccardi E, Killian MS, Schmuki P, et al. Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioactive Mater. 2018;3(1):55–63.

    Google Scholar 

  67. Yao Q, Nooeaid P, Roether JA, Dong Y, Zhang Q, Boccaccini AR. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram Int. 2013;39(7):7517–22.

    CAS  Google Scholar 

  68. Rogero SO, Lugão AB, Ikeda TI, Cruz ÁS. Teste in vitro de citotoxicidade: estudo comparativo entre duas metodologias. Mater Res. 2003;6(3):317–20.

    CAS  Google Scholar 

  69. Santos KO, Barbosa RC, da Silva Buriti J, Junior AGB, de Sousa WJB, de Barros SMC, et al. Thermal, chemical, biological and mechanical properties of chitosan films with powder of eggshell membrane for biomedical applications. J Therm Anal Calorim. 2019;136(2):725–35.

    CAS  Google Scholar 

Download references

Acknowledgements

The National Postdoctoral Program of the Coordination for Improvement of Higher Education Personnel (PNPD), the Coordination of Improvement for Higher Education Personnel (CAPES), the Laboratory of Evaluation and Development of Biomaterials of the Northeast (CERTBIO), and the Federal University of Campina Grande (UFCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué da Silva Buriti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Buriti, J., Barreto, M.E.V., Barbosa, F.C. et al. Synthesis and characterization of Ag-doped 45S5 bioglass and chitosan/45S5-Ag biocomposites for biomedical applications. J Therm Anal Calorim 145, 39–50 (2021). https://doi.org/10.1007/s10973-020-09734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09734-4

Keywords

Navigation