Skip to main content
Log in

Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal performance of solar still can be enhanced by means of nanoparticles. The core aim of the present work is to identify the influence of nanoparticles on productivity of single-basin dual-slope solar still through the experimental investigation with different glass cover orientations of still and the varying water depth in basin. Two identical single-basin dual-slope solar stills were fabricated, and experiments were conducted at location (20.61° N, 72.91° E). In first set of experiments, comparison of productivity of the still without nanoparticles and the still with 0.1% mass concentration of aluminium oxide (Al2O3) nanoparticles has been made at different depths of water. The experiments were conducted with glass covers oriented towards East–West and North–South directions. Compared to the still without nanoparticles, enhancement of 19.40%, 28.53% and 26.59% in distilled output was obtained with Al2O3 nanoparticles at the 30 mm, 20 mm and 10 mm water depth for the North–South orientation, respectively. The enhancement of 58.25% and 56.31% in yield was obtained for 20 mm and 10 mm water depth with copper oxide (CuO) nanoparticles for the North–South orientation. Compared to the still with 0.1% Al2O3 nanoparticles, 27.27% and 26.60% higher productivities were achieved at 20 mm and 10 mm water depths with the use of 0.1% CuO nanoparticles for the glass covers oriented towards North–South directions. Therefore, enhancement in thermal performance of single-basin dual-slope solar still was observed higher with the consumption of CuO nanoparticles than the Al2O3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tiwari GN, Singh HN, Tripathi R. Present status of solar distillation. Sol Energy. 2003;75:367–73. https://doi.org/10.1016/j.solener.2003.07.005.

    Article  CAS  Google Scholar 

  2. Shobha BS, Watwe V, Rajesh AM (2012) Performance evaluation of a solar still coupled to an evacuated tube collector type solar water heater. Int J Innov Eng Technol 1. ISSN 2319-1058.

  3. Jani HK, Modi KV. A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices. Renew Sustain Energy Rev. 2018;93:302–17. https://doi.org/10.1016/j.rser.2018.05.023.

    Article  Google Scholar 

  4. Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. Desalination. 2016;388:9–21. https://doi.org/10.1016/j.desal.2016.02.039.

    Article  CAS  Google Scholar 

  5. Shukla DL, Modi KV. A technical review on regeneration of liquid desiccant using solar energy. Renew Sustain Energy Rev. 2017;78:517–29. https://doi.org/10.1016/j.rser.2017.04.103.

    Article  CAS  Google Scholar 

  6. Muftah AF. Factors affecting basin type solar still productivity: a detailed review, Renew. Renew Sustain Energy Rev. 2014;32:430–47.

    Article  Google Scholar 

  7. Xiao G, Wang X, Ni M, et al. A review on solar stills for brine desalination. Appl Energy. 2013;103:642–52. https://doi.org/10.1016/j.apenergy.2012.10.029.

    Article  CAS  Google Scholar 

  8. Nafey AS, Abdelmotaliip M, Mabrouk AA. Parameters affecting solar still productivity. Energy Convers Manag. 2000;41:1791–809.

    Article  Google Scholar 

  9. Kabeel AE, Khalil A, Omara ZM, Younes MM. Theoretical and experimental parametric study of modified stepped solar still. Desalination. 2012;289:12–20.

    Article  CAS  Google Scholar 

  10. Modi KV, Ankoliya DB, Shukla DL. An approach to optimization of double basin single slope solar still water depth for maximum distilled water output. J Renew Sustain Energy. 2018;10:043708. https://doi.org/10.1063/1.5023088.

    Article  Google Scholar 

  11. Modi KV, Modi JG. Performance of single-slope double-basin solar stills with small pile of wick materials. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2018.12.071.

    Article  Google Scholar 

  12. Jani HK, Modi KV. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol Energy. 2019;179:186–94. https://doi.org/10.1016/j.solener.2018.12.054.

    Article  Google Scholar 

  13. Modi KV, Nayi KH, Sharma SS. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundw Sustain Dev. 2020;10:100299. https://doi.org/10.1016/j.gsd.2019.100299.

    Article  Google Scholar 

  14. Eibling JA, Talbert SG, Löf GOG. Solar stills for community use-digest of technology. Sol Energy. 1971;13:263–76. https://doi.org/10.1016/0038-092X(71)90007-7.

    Article  Google Scholar 

  15. Elango C, Gunasekaran N, Sampathkumar K. Thermal models of solar still—a comprehensive review. Renew Sustain Energy Rev. 2015;47:856–911. https://doi.org/10.1016/j.rser.2015.03.054.

    Article  Google Scholar 

  16. Nayi KH, Modi KV. Pyramid solar still: a comprehensive review. Renew Sustain Energy Rev. 2018;81:136–48. https://doi.org/10.1016/j.rser.2017.07.004.

    Article  Google Scholar 

  17. Nayi KH, Modi KV. Thermal modeling of pyramid solar still. In: Solar desalination technology. Springer Singapore; 2019. p. 205–218

  18. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. Berlin: Springer; 2019.

    Google Scholar 

  19. Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy. 2016;130:260–72. https://doi.org/10.1016/j.solener.2016.02.018.

    Article  CAS  Google Scholar 

  20. Solangi KH, Kazi SN, Luhur MR, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86. https://doi.org/10.1016/j.energy.2015.06.105.

    Article  CAS  Google Scholar 

  21. Ravita D, Gamoz-Malgao LA, Rativa D, et al. Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol Energy. 2015;118:419–25. https://doi.org/10.1016/j.solener.2015.05.048.

    Article  CAS  Google Scholar 

  22. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125:151.

    Article  CAS  Google Scholar 

  23. Xie H, Wang J, Xi T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91:4568–72. https://doi.org/10.1063/1.1454184.

    Article  CAS  Google Scholar 

  24. Beck MP, Sun T, Teja AS. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilib. 2007;260:275–8. https://doi.org/10.1016/j.fluid.2007.07.034.

    Article  CAS  Google Scholar 

  25. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60. https://doi.org/10.1080/01457630701850851.

    Article  CAS  Google Scholar 

  26. Nguyen CT, Desgranges F, Roy G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004.

    Article  CAS  Google Scholar 

  27. Dharmalingam R, Sivagnanaprabhu KK, Senthil Kumar B, Thirumalai R. Nano materials and nanofluids: an innovative technology study for new paradigms for technology enhancement. Procedia Eng. 2014;97:1434–41. https://doi.org/10.1016/j.proeng.2014.12.425.

    Article  Google Scholar 

  28. Otanicar TP, Phelan PE, Golden JS. Optical properties of liquids for direct absorption solar thermal energy systems. Sol Energy. 2009;83:969–77. https://doi.org/10.1016/j.solener.2008.12.009.

    Article  CAS  Google Scholar 

  29. Taylor RA, Phelan PE, Otanicar TP, et al. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett. 2011;6:1–11. https://doi.org/10.1186/1556-276X-6-225.

    Article  CAS  Google Scholar 

  30. Nagarajan PK, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for solar collector applications: a review. Energy Procedia. 2014;61:2416–34. https://doi.org/10.1016/j.egypro.2014.12.017.

    Article  CAS  Google Scholar 

  31. Bozorgan N, Shafahi M. Performance evaluation of nanofluids in solar energy: a review of the recent literature. Micro Nano Syst Lett. 2015;3:5. https://doi.org/10.1186/s40486-015-0014-2.

    Article  Google Scholar 

  32. Sajid Hossain M, Saidur R, Mohd Sabri MF, et al. Spotlight on available optical properties and models of nanofluids: a review. Renew Sustain Energy Rev. 2015;43:750–62. https://doi.org/10.1016/j.rser.2014.11.010.

    Article  CAS  Google Scholar 

  33. Du M, Tang GH. Optical property of nanofluids with particle agglomeration. Sol Energy. 2015;122:864–72. https://doi.org/10.1016/j.solener.2015.10.009.

    Article  CAS  Google Scholar 

  34. Sajid MU, Ali HM, Sufyan A, et al. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94. https://doi.org/10.1007/s10973-019-08043-9.

    Article  CAS  Google Scholar 

  35. Abdelrazek AH, Kazi SN, Alawi OA, et al. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08562-5.

    Article  Google Scholar 

  36. Sarafraz MM, Pourmehran O, Yang B, et al. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131. https://doi.org/10.1016/j.ijthermalsci.2019.106131.

    Article  CAS  Google Scholar 

  37. Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry (Basel). 2019. https://doi.org/10.3390/SYM11020276.

    Article  Google Scholar 

  38. Prakash J, Tripathi D, Triwari AK, et al. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry (Basel). 2019. https://doi.org/10.3390/sym11070868.

    Article  Google Scholar 

  39. Sheikholeslami M, Ellahi R, Shafee A, Li Z. Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: an application of entropy generation and exergy loss. Int J Numer Methods Heat Fluid Flow. 2019;29:1079–102. https://doi.org/10.1108/HFF-10-2018-0606.

    Article  Google Scholar 

  40. Ellahi R, Sait SM, Shehzad N, Mobin N. Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry (Basel). 2019. https://doi.org/10.3390/sym11081038.

    Article  Google Scholar 

  41. Zeeshan A, Ellahi R, Mabood F, Hussain F. Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int J Numer Methods Heat Fluid Flow. 2019;29:2854–69. https://doi.org/10.1108/HFF-11-2018-0677.

    Article  Google Scholar 

  42. Elango T, Kannan A, Kalidasa Murugavel K. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51. https://doi.org/10.1016/j.desal.2015.01.004.

    Article  CAS  Google Scholar 

  43. Kabeel AE, Omara ZM, Essa FA. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Convers Manag. 2014;78:493–8. https://doi.org/10.1016/j.enconman.2013.11.013.

    Article  CAS  Google Scholar 

  44. Omara ZM, Kabeel AE, Essa FA. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag. 2015;103:965–72. https://doi.org/10.1016/j.enconman.2015.07.035.

    Article  Google Scholar 

  45. Modi KV, Shukla DL, Ankoliya DB. A comparative performance study of double basin single slope solar still with and without using nanoparticles. J Sol Energy Eng. 2018;141:031008. https://doi.org/10.1115/1.4041838.

    Article  CAS  Google Scholar 

  46. Modi KV, Shukla DL. Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still. Energy Convers Manag. 2018;171:1598–616. https://doi.org/10.1016/j.enconman.2018.06.096.

    Article  CAS  Google Scholar 

  47. Shukla DL, Modi KV. Hybrid solar still—liquid desiccant regenerator and water distillation system. Sol Energy. 2019;182:117–33. https://doi.org/10.1016/j.solener.2019.02.043.

    Article  CAS  Google Scholar 

  48. Nazari S, Safarzadeh H, Bahiraei M. Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renew Energy. 2019;135:729–44. https://doi.org/10.1016/j.renene.2018.12.059.

    Article  CAS  Google Scholar 

  49. Nazari S, Safarzadeh H, Bahiraei M. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. J Clean Prod. 2018;208:1041–52. https://doi.org/10.1016/j.jclepro.2018.10.194.

    Article  CAS  Google Scholar 

  50. Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10. https://doi.org/10.1016/j.renene.2017.08.059.

    Article  CAS  Google Scholar 

  51. Goss WP, Miller RG. Thermal properties of wood and wood products. In: Proceedings of thermal performance of the exterior envelopes of buildings. ASHRAE; 1992. p. 193–203.

  52. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME J Heat Transf. 1999;121:280–9. https://doi.org/10.1115/1.2825978.

    Article  CAS  Google Scholar 

  53. Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids—a review. Heat Transf Eng. 2016;27:3–19. https://doi.org/10.1080/01457630600904593.

    Article  CAS  Google Scholar 

  54. Kirkup L, Frenkel R. An introduction to uncertainty in measurement using the GUM (guide to the expression of uncertainty in measurement). 1st ed. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  55. Lira I (2002) Evaluation the measurement uncertainty fundamental and practical guidance. Institute of Physics Publishing.

  56. Sahota L, Shyam Tiwari GN. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination. 2017;409:66–79. https://doi.org/10.1016/j.desal.2017.01.012.

    Article  CAS  Google Scholar 

  57. Sahota L, Tiwari GN. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers Manag. 2017;148:413–30. https://doi.org/10.1016/j.enconman.2017.05.068.

    Article  CAS  Google Scholar 

  58. Rajaseenivasan T, Srithar K. Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination. 2016;380:66–74. https://doi.org/10.1016/j.desal.2015.11.025.

    Article  CAS  Google Scholar 

  59. Omara ZM, Hamed MH, Kabeel AE. Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination. 2011;277:281–7. https://doi.org/10.1016/j.desal.2011.04.042.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpesh V. Modi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, K.V., Jani, H.K. & Gamit, I.D. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. J Therm Anal Calorim 143, 899–913 (2021). https://doi.org/10.1007/s10973-020-09351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09351-1

Keywords

Navigation