Skip to main content
Log in

Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode: best configurations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present numerical study consists of a mixed convection heat transfer, taking place within a ventilated cubic cavity crossed by an alumina–water nanofluid. The ventilation is assured by three openings, practiced on the walls of the cavity. So, the cold nanofluid enters by an opening placed at the top of the left vertical wall and exits by two opening: one is placed at the bottom of the right vertical wall, and the second opening occupied several possibility of location along the four walls of the cavity. All the enclosure’s walls are maintained at a same temperature, higher than that of the entering fluid, except of the side walls which are adiabatic. The governing equations are discretized using the finite volume method and the SIMPLER algorithm to treat the coupling velocity–pressure. The method line by line is used to solve iteratively the algebraic equations. The simulations were carried for different values of the Richardson number (0 ≼ Ri ≼ 10), the Hartmann number (0 ≼ Ha ≼ 100) and a solid volume fractions φ = 4% using Koo–Kleinstreuer–Lee model for the evaluation of effective thermal conductivity and dynamic viscosity of nanofluid. The results are presented in the form of streamlines, isotherms, velocity vectors and average Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

B 0 :

External magnetic field (T)

Cp:

Constant pressure specific heat (\( {\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} \))

F :

Lorentz force (\( {\text{N}}\,{\text{m}}^{ - 3} \))

G :

Gravitational acceleration (\( {\text{ms}}^{ - 2} \))

H :

Height of cavity (m)

Ha:

Hartman number

K :

Thermal conductivity (\( {\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} \))

L :

Length of the cavity (m)

Nu:

Nusselt number

P :

Pressure (Pa)

P :

Dimensionless pressure

Pr:

Prandtl number

Re:

Reynolds number

Ri:

Richardson number

S :

Coordinate adopted for distance along the walls (m)

S :

Dimensionless coordinate, \( S\, = \,s\,H^{ - 1} \)

T :

Temperature (K)

x, y, z :

Cartesian coordinates (m)

X, Y, Z :

Dimensionless Cartesian coordinates

u, v, w :

Velocity components in the x-direction, y-direction and z-direction (ms−1)

U, V, W :

Dimensionless velocity components

Α :

Thermal diffusivity (\( {\text{m}}^{2} {\text{s}}^{ - 1} \))

β :

Thermal expansion coefficient (\( {\text{K}}^{ - 1} \))

Ρ :

Density (\( {\text{kg}}\,{\text{m}}^{ - 3} \))

Ν :

Kinematic viscosity (\( {\text{m}}^{2} {\text{s}}^{ - 1} \))

µ :

Dynamic viscosity (\( {\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} \))

θ :

Dimensionless temperature

φ :

Particle volume fraction

σ :

Electrical conductivity (\( \Omega ^{ - 1} \,{\text{m}}^{ - 1} \))

Avg:

Average

Bf:

Base fluid

Nf:

Nanofluid

S:

Solid particles

References

  1. Choi SUS. Enhancing thermal conductivity of fluid with nanoparticles. Dev Appl Non Newton Flows. 1995;66:99–105.

    Google Scholar 

  2. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11(5):797–817.

    Article  CAS  Google Scholar 

  3. Godson L, Raja B, Mohan LD, Wongwises S. Enhancement of heat transfer using nanofluids-an overview. Renew Sustain Energy Rev. 2010;14(2):629–41.

    Article  CAS  Google Scholar 

  4. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  5. Lai FH, Yang YT. Lattice Boltzmann simulation of natural convection heat transfer of Al2O3–water nanofluids in a square enclosure. Int J Therm Sci. 2011;50:1930–41.

    Article  CAS  Google Scholar 

  6. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15. https://doi.org/10.1007/s10973-018-7009-1.

    Article  CAS  Google Scholar 

  7. Souritiji E, Gorji-Bandpy M, Ganji DD, Hosseinizadeh SF. Numerical analysis of mixed convection heat transfer of Al2O3–water nanofluid in a ventilated cavity considering different positions of the outlet port. Powder Technol. 2014;262:71–81.

    Article  Google Scholar 

  8. Lounes K, Zohir Y, Yassine C, Hassane N. Numerical investigation of turbulent mixed convection in an open cavity. Int J Therm Sci. 2017;116:103–17.

    Article  Google Scholar 

  9. Davidson PA. An introduction to magnetohydrodynamics. Cambridge: Cambridge University Press; 2001.

    Book  Google Scholar 

  10. M’hamed B, Sidik NAC, Yazid MNAWM, Mamat R, Najafi G, Kefayati GHR. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transf. 2006;78:60–7.

    Article  Google Scholar 

  11. Afifah AN, Syahrullail S, Sidik NAC. Magnetoviscous effect and thermomagnetic convection of magnetic fluid: a review. Renew Sustain Energy Rev. 2016;55:1030–40.

    Article  CAS  Google Scholar 

  12. Sheikholeslami M, Rokni Houman B. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  13. Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transf. 2009;36:776–80.

    Article  CAS  Google Scholar 

  14. Malvandi A, Ganji D. Magnetic field and slip effects on free convection inside a vertical enclosure filled with alumina/water nanofluid. Chem Eng Res Des. 2015;94:355–64.

    Article  CAS  Google Scholar 

  15. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6918-8.

    Article  Google Scholar 

  16. Kasaeipoor A, Ghasemi B, Aminossadati SM. Convection of Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field. Int J Therm Sci. 2015;94:50–60.

    Article  CAS  Google Scholar 

  17. Ozoe H, Okada K. The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int J Heat Mass Transf. 1989;32:1939–54.

    Article  CAS  Google Scholar 

  18. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    Article  CAS  Google Scholar 

  19. Wenning Z, Yuying Y, Yulei X, Baiqian L. Three dimensional lattice Boltzmann for mixed convection of nanofluids in the presence of magnetic field. Int Commun Heat Mass Transf. 2017;80:1–9.

    Article  Google Scholar 

  20. Khadiri A, Bennacer R, Hasnaoui M, Amahmid A. A two- and three-dimensional multiple steady states in a porous cavity heated and salted from below. Int J Heat Mass Transf. 2011;50:918–29.

    Google Scholar 

  21. Boutra A, Ragui K, Bennacer R, Benkahla YK. Natural convection heat transfer of a Nanofluid into a cubical enclosure: lattice Boltzmann investigation. Arab J Sci Eng. 2016;41:1969–80.

    Article  CAS  Google Scholar 

  22. Hadidi N, Bennacer R. Three-dimensional double diffusive natural convection across a cubical enclosure partially filled by vertical porous layer. Int J Therm Sci. 2016;101:143–57.

    Article  Google Scholar 

  23. Kefayati GHR, Tang H. MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM. Int J Heat Mass Transf. 2018;124:344–67.

    Article  Google Scholar 

  24. Yu PX, Tian ZF. Comparison of the simplified and full MHD models for laminar incompressible flow past a circular cylinder. Appl Math Modell. 2016;000:1–21.

    Google Scholar 

  25. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  26. Hussain S, Mehmood K, Sagheer M. MHD mixed convection and entropy generation of water—alumina nanofluid flow in a double lid driven cavity with discrete heating. J Magn Magn Mater. 2016;419:140–55.

    Article  CAS  Google Scholar 

  27. Koo J, Kleinstreuer C. Laminar nanofluid flow in micro heat-sinks. Int J Heat Mass Transf. 2005;48:2652–61.

    Article  CAS  Google Scholar 

  28. Maxwell JA. Treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904.

    Google Scholar 

  29. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    Article  CAS  Google Scholar 

  30. Vanaki ShM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

  31. Mehmood K, Hussain S, Sagheer M. Numerical simulation of MHD mixed convection in alumina–water nanofluid filled square porous cavity using KKL model: effects of non-linear thermal radiation and inclined magnetic field. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.

    Article  Google Scholar 

  32. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  33. Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980.

    Google Scholar 

  34. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: 1st ASME-JSME thermal engineering joint conference. New York: ASME; 1983. pp. 323–329.

  35. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seddik Kherroubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherroubi, S., Ragui, K., Bensaci, A. et al. Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode: best configurations. J Therm Anal Calorim 139, 2243–2264 (2020). https://doi.org/10.1007/s10973-019-08638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08638-2

Keywords

Navigation